
THE UNIVERSITY OF CALGARY

Collaborative Information Visualization in Co-located Environments

by

Petra Isenberg

A DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

DECEMBER, 2009

© Petra Isenberg 2009





UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled “Collaborative Information Visualization

in Co-located Environments” submitted by Petra Isenberg in partial fulfilment of the

requirements for the degree of Doctor of Philosophy.

Supervisor, Dr. Sheelagh Carpendale

Department of Computer Science

Dr. Saul Greenberg

Department of Computer Science

Dr. Amy Ashurst Gooch

Department of Computer Science, University of Victoria

Dr. Patrick Shiao Tsong Feng

Department of Communications & Culture

Dr. Colin Ware

External, University of New Hampshire

Date

i





ABSTRACT

Information visualization research has been developing new methods to represent data

and interact with graphical displays of information for more than two decades. In

many disciplines, however, the size and complexity of datasets are rapidly growing.

As a consequence, it is becoming increasingly necessary to join the domain expertise

and data analysis skills of several people to inform decisions about the content of a

dataset. While the technological possibilities for supporting teamwork are gradually

evolving, several obstacles remain for designing information visualizations that can

support team members as they collaboratively explore and analyze information. In this

dissertation, I examine this problem by identifying and addressing some of the open

issues in the design of information visualizations that support small teams of experts in

their joint data analysis activities.

Within the general area of collaborative visualization, this research is scoped to fo-

cus on a subset of collaborative visualization scenarios that occur in co-located syn-

chronous work environments; where small groups of collaborators share the same phys-

ical workspace such as a large digital table or wall display. Specifically, it contributes

to a richer understanding of how groups work with each other and with information

visualizations in phases of joint and parallel work.

In this dissertation, I show that team members tend to prefer working in parallel on

specific types of information analysis tasks and more closely together on others. During

phases of parallel work, individual team members take on unique approaches to data

analysis. Thus, for the design of collaborative analysis systems, the support of unique

analysis approaches and a flexible temporal flow of activities—both in the temporal

sequence and co-occurrence of work styles in groups—need to be considered. In addi-

tion, the three case studies presented in this dissertation examine possibilities of how

this flexibility can be supported. These case studies shed light on issues of parallel and
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joint work with multiple views in a collaborative system, parallel and joint work with

a single shared visualization, as well as awareness support during parallel work. In

summary, this dissertation contributes to the evolving understanding of collaborative

work practices around information visualizations and introduces several specific design

considerations.
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CHAPTER 1

INTRODUCTION

In recent years, we have seen information visualization tools receive more general adop-

tion and integration into commercial products (Shneiderman and Plaisant, 2009). As

a result, information visualizations are increasingly becoming essential tools for infor-

mation analysis, exploration, and understanding tasks. This is in part the case because

visual displays of information have several benefits over exploring information in tex-

tual or numerical form. Visualizations can increase memory and processing resources

available to a viewer by encoding data visually and making use of our high-bandwidth

visual system to perceive these encodings (Card et al., 1999; Ware, 2000). Looking at

visual encodings of data has been shown to reduce search time, enhance detection of

anticipated or unanticipated patterns, enable perceptual inference operations and hy-

pothesis formulation, help the monitoring of changing data, and help data exploration

by providing a manipulable medium (Card et al., 1999; Ware, 2000). Yet, simply find-

ing an effective visual encoding for a given information source is often not enough to

aid an individual in completing an information-related task. For example, as datasets

become increasing large and complex, several analysts often have to join their knowl-

edge, expertise, and analysis skills in order to be able to make informed decisions about

these information-rich datasets (Thomas and Cook, 2005). So far, research in visual-

ization has largely focused on supporting the data analysis activities of a single person.

How, in contrast, the collaborative work of teams sharing, discussing, and interpret-

ing information visualizations can be supported, is the general problem area of this

dissertation.
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In this chapter, I introduce this research context, point out that my scope is within col-

laborative information visualization in co-located environments and define this restricted

problem domain of my dissertation work. Finally, I outline my research goals, and end

the chapter with a brief overview of the entire dissertation’s structure.

1.1 COLLABORATIVE VISUALIZATION

During the timeframe of this dissertation, a trend towards collaborative data analy-

sis and exploration has emerged in information visualization. From 2007 to 2009,

websites such as ManyEyes (Viégas et al., 2007), iCharts (iCharts Inc., 2008), Verifi-

able.com (Visible Certainty, 2009), or Swivel (Dimov and Mulloy, 2009) have emerged

and are among the first to serve as platforms for joint viewing, creation, and discus-

sion of visualization on an Internet scale. Yet, social interaction around data is not a

new phenomenon. In everyday practice, data is frequently interpreted, analyzed, and

explored not only by individuals but also by teams who work in concert to make deci-

sions, form actions, or learn about information. Such joint and social activities around

visualizations are central to collaborative visualization. The question of how to best

support data analysis as a social process unites several different research approaches

and raises interesting new issues for the field of visualization. For example, one re-

search approach (e. g., Viégas et al. (2007)) focuses on the use of online social media

techniques such as comment threads, annotations, and bookmarking, in order to bring

together large numbers of, possibly unacquainted, people for playful and open-ended

exploration or discussion of information. Other researchers have focused on the sup-

port of synchronous data analysis meetings in distributed settings (see an overview by

Anupam et al. (1994)). Here, another set of questions have to be addressed such as

which network and software architectures support synchronous interactions with visu-

alizations, how can joint viewpoints be coordinated, and how can synchronous online

discussions be facilitated in reference to the data on the screen. In this thesis, I take

a different approach: I focus on small group, task- and work-oriented collaboration

in a physically shared work environment. I concentrate on collaboration around large

single-display technology such as wall or tabletop displays to facilitate co-located col-

laborative data analysis activities with computer support. To set the research of this
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dissertation in a greater context, however, first a more precise definition of collabora-

tive visualization is necessary.

1.2 CONTEXT AND DEFINITION

Previously, several definitions have been given to describe specific aspects of collabora-

tive visualization. None, however, have attempted to give an encompassing definition

of the entire scope of group work around visual representations of data. I discuss four

of these definitions in the following, note their limitations, and finally provide my own

definition for collaborative visualization.

One of the earliest definitions by Raje et al. (1998) emphasizes the goal of collaborative

visualization:

“Collaborative visualization enhances the traditional visualization by bringing

together many experts so that each can contribute toward the common goal of

the understanding of the object, phenomenon, or data under investigation.”

Raje et al. (1998)

While bringing experts together is an advantage in some collaborative visualization

scenarios, collaborators often do not need to be experts. Non-experts can join in collab-

orative analyses and learn from others’ analysis processes and viewpoints on a dataset

(Heer et al., 2008). Similar to this restriction by type of collaborators, other definitions

may have been too restrictive in terms of the applicable fields:

“The term “collaborative visualization” refers to a subset of CSCW applications

in which control over parameters or products of the scientific visualization

process is shared.”
Johnson (1998)

“Collaborative visualization [. . .] allows geographically separated users to

access a shared virtual environment to visualize and manipulate datasets for

problem solving without physical travel.”
Li et al. (2006)
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The first definition emphasizes collaboration with interactive, manipulable visualiza-

tion for the scientific visualization community. The restriction to only the scientific

visualization community is overly limiting as the information visualization community

can similarly make use of collaborative systems to analyze data. The second definition

emphasizes distributed visualization in virtual environments. This is also too limiting

because research on groupware systems has a long tradition in both distributed as well

as co-located spatial domains. The limitation to virtual environments is another un-

necessary restriction. Collaborative visualization also has had numerous applications

outside of virtual environments (see Chapter 2). The restriction to only interactive visu-

alizations in both definitions may also be limiting and it is still being debated whether

interactivity should be a part of a general definition of visualization (e. g., Pousman

et al. (2007)). For example, groups of people may often come together to discuss static

visualizations printed on posters, in handouts, or projected as a slideshow. In these

scenarios, social interaction around data does occur but the interaction with data may

be limited to the selection of which data to look at. In this dissertation, I only consider

collaboration with interactive visualizations.

Recently, the term social data analysis has been coined to describe the social interaction

that is a central part of collaborative visualization:

“[Social data analysis is] a version of exploratory data analysis that relies on

social interaction as source of inspiration and motivation.”

Wattenberg (2005)

The term social data analysis emphasizes the possibility of human interactions such

as discussions, negotiations, or arguments around visualizations as the driving factors

of data exploration. Yet, social interaction around data may occur in more scenar-

ios than just exploratory data analysis. For example, targeted or confirmatory data

analysis, teaching, learning, or decision-making scenarios may also frequently involve

collaboration. In addition, the term social data analysis has an unfortunate ambiguous

connotation in that it could refer to the analysis of social data, such as social networks,

email graphs, or instant messaging chats. Even in the form of the definition given

by Wattenberg (2005) (see above), it has recently been increasingly used to solely de-

scribe web-based social media approaches to collaborative visualization. In order to

more broadly describe the entire scope that collaborative visualization can encompass,
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I use the term collaborative visualization as follows to describe my research context in

a more general way:

Collaborative visualization is the shared use of computer-supported, possibly

interactive, visual representations of data by more than one person with the

common goal of contribution to joint information processing activities.

This definition is derived from a general definition for visualization as the use of compu-

ter-supported, interactive, visual representations of data to amplify cognition (Card et al.,

1999). It has been augmented by emphasizing the shared use of (interactive) visual

representations—which could be in the form of joint viewing, interacting with, dis-

cussing, or interpreting the representation. Secondly, the word “cognition” has been

replaced with the word “information processing.” This replacement honours the fact

that different theories exist for how cognition applies when groups come together

to jointly think and reason. Each theory has different terminology, restrictions, and

units of analysis. For example, the theory of Group Cognition (Stahl, 2006) describes

collaborative knowledge building for small groups by focusing on linguistic analysis,

Distributed Cognition (Hutchins, 1996) focuses on social aspects of cognition by ana-

lyzing the coordination between individuals and artifacts, and Communities of Practice

(Wenger, 1999) describe learning within much larger social communities. In order to

avoid favouring any specific theory or unit of analysis, the word information processing

has been used here as a general term to describe cognitive activities involved in individ-

ual or collaborative processing of visual information, such as reading, understanding,

applying knowledge, discussing, or interpreting.

Given this broad definition of collaborative visualization, we can look at a number of

different scenarios in which it may occur. While much of the early research in collab-

orative visualization has focused on remote collaborators, several other scenarios fall

under our broad definition. Using the space-time matrix (Dix et al., 1998), we can

broadly categorize collaborative scenarios according to where they occur in space (dis-

tributed vs. co-located) and time (synchronous vs. asynchronous). These distinctions

for systems or tools are not strict—systems can cross boundaries and could, for exam-

ple, be used both synchronously or asynchronously, as pointed out by Dix et al. (1998)

for the example of e-mail. E-mail can be used similar to a chat client in synchronous

work or asynchronously in conversations that stretch over longer periods of time. Fig-
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Figure 1.1: Collaborative visualization can occur in many scenarios delineated accord-
ing to space and time (matrix adapted from Dix et al. (1998)).

ure 1.1 shows several scenarios in which collaborative visualization can occur. I will

use this distinction again to more narrowly define the scope of this dissertation work.

At the same time, collaborative information visualization may occur on different levels

of engagement with the visualizations. The larger group involved in the social interac-

tion around data can simply view the information, actively interact with and explore it,

or even join in creating new visualizations and share those and the underlying datasets

with a larger community (Zambrano and Engelhardt, 2008). Different digital systems

have been designed to support collaborative visualizations along these different levels

of engagement. A few example scenarios are presented next:

Viewing: Presentation systems such as PowerPoint or simple videocon-

ferencing tools can support a group of people viewing static or

animated visualizations of data without being able to interact

with or annotate the information. Such scenarios could oc-

cur, for example, in classrooms or meetings where one presen-
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ter explains, teaches, or summarizes information for the larger

group. The goal of the group may be to learn, discuss, inter-

pret, or form decisions from a pre-selected set of information

and visualizations.

Interacting / Exploring: When groups of people share the same interactive visualiza-

tion software, either in co-located or distributed settings, they

can choose and select alternative views of the data for its explo-

ration, analysis, discussion, and interpretation. In distributed

settings, findings can typically be exchanged through chats, e-

mail, or a video- or audio-link so that the changing views and

alternative representations of the data can be discussed and

analyzed. This discussion can also occur face-to-face in co-

located settings. The goal of the group is to be able to cover

and explore different and more aspects of the data, consider al-

ternative interpretations, and discuss the data in a wider visual

context.

Sharing / Creating: Through the emerging trend of user-generated content sites for

visualization (e. g., in systems such as ManyEyes (Viégas et al.,

2007)), many people are able to create, upload, and share new

datasets and visualizations. Often this type of sharing is done

with a greater community to raise awareness about a certain

issue.

The distinction between these levels of engagement can be blurred. Digital systems may,

for example, be intended to mainly support collaborative interaction and exploration

of data but may also support the sharing and creation of new visualizations or even

the download of new datasets to visualize. However, both time and space dimensions

as well as levels of engagement can help to broadly scope a research focus within

collaborative visualization.
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1.3 RESEARCH SCOPE

Within the general definition for collaborative visualization developed in the previous

section, I focus the research scope of this dissertation on a subset of collaborative visu-

alization scenarios that:

• occur in co-located environments, where several collaborators share the same

physical workspace,

• use a single shared workspace such as an interactive digital tabletop or wall

display,

• occur in synchronous work settings, where collaborative analysis occurs at the

same time,

• include interactive information visualizations as their main type of visualization,

• include small groups of 2–4 individuals,

• support mainly interaction and exploration of data with the goal to analyze the

encoded information.

Several motivations lie behind this narrower research scope. First of all, interactive

information visualizations have shown many benefits for individual data analysis as

already outlined in the previous section (Card et al., 1999; Ware, 2000). Collaboration

around visualizations can also have a number of benefits over individual work. In many

disciplines, collaboration allows for multi-disciplinary groups with increased skill sets.

Different team members offer different perspectives and expertise that together can

improve the quality of solutions and decisions. Also, the analyzed information space

may often simply be too complex for an individual to interpret in its entirety. With

large data sets, even the task load of exploring the data could be shared among several

individuals on a team (Thomas and Cook, 2005). The benefits that collaboration offers

to this process have motivated my shift from developing information visualization tools

for use by just one person toward research on the design of collaborative information

visualization tools.

Developing collaborative visualization tools is a promising endeavour as several aspects

of information work already often involve group work: the acquisition of information,

the analysis and interpretation of information, sharing and interpretation of analysis

results, and decision making (Chuah and Roth, 2003). Each of these tasks can be
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supported with digital tools and each has its own design considerations. In this dis-

sertation, I look at a subset of these tasks—collaboration around analysis and inter-

pretation of the visualized data. I assume that data has already been collected and is

available for joint analysis. I do not include research on specific functionality to share

and disseminate the joint analysis results with outside groups or stakeholders. Both the

collaborative collection of data and the dissemination of analysis results are important

aspects of collaborative work with information but are complex research endeavours

of their own.

Collaboration with the goal to analyze data in small groups and co-located synchronous

work settings is relatively common in current workspaces, however, there is currently

little software support for this type of work. While it is possible for small teams to

work with information visualizations using the standard setup of a small screen, one

mouse, and one keyboard—only one person at a time is able to make any changes

to the view of the system. Attempting to collaborate under these conditions can be

awkward and unnatural. The recent trend toward the use of large interactive displays

offers the potential for the development of improved collaborative information visual-

ization systems in which many co-located team members can simultaneously interact

and explore data sets. However, it is not yet well understood how interfaces, visualiza-

tions, and interaction techniques should be designed to specifically address the needs

of small co-located groups.

With this scope, the research topic of this dissertation lies at the intersection of two

main fields as seen in Figure 1.2: Information Visualization (InfoVis) and Computer

Supported Cooperative Work (CSCW). In the field of information visualization, re-

searchers have been working towards developing new visual representations, presen-

tation, and interaction techniques to amplify human cognition for different types of

datasets, tasks, and analysis scenarios (Card et al., 1999; Ware, 2000; Chen, 2006;

Spence, 2007a). Research from the field of information visualization informs the top-

ics of this dissertation through its discussion of how individuals work with and perceive

visual data representations, how they perform data analysis, and how to design inter-

active information visualization systems to support these work processes. The field of

CSCW (Dix et al., 1998, Chapter 13) is concerned with the challenges of designing

software for multiple people to work as a group and how to understand the effect of

deployed software on their work processes. Within CSCW in particular, the work on
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Figure 1.2: Research scope of this dissertation.

single-display synchronous co-located groupware for small teams has a high applicabil-

ity to the research of this dissertation. I further discuss the applicability of related work

in these areas to the specific problem domain of this dissertation in Chapter 3.

1.4 RESEARCH GOALS

The design of collaborative systems poses challenges in addition to those encountered

during the design of information visualization systems that are intended to be used by

a single person. In a group setting, the use of co-located collaborative technology needs

to support a process of social interaction around the data. Ideally, it should help the

group to arrive at a common understanding of the data through a process of collabora-

tive interpretation, analysis, discussion, and interaction. For example, in Figure 1.3a a

single person works with an information display through a process of looking at and

possibly interacting with an information visualization, forming a mental model by in-

terpreting the representation, and ideally gaining an insight and forming a decision

(Spence, 2007a). In Figure 1.3b two people join in a collaborative analysis. They

both come to individual insights by looking at and interpreting the dataset. However,

through social interaction (e. g., discussion and negotiation) they both should reach

a common understanding of the dataset in order for both of them to make informed

decisions as a group, derive common recommendations, or take joint next step actions

together after the analysis. The visionary goal would be that through using collabora-

tive visualization tools, groups are able to gain additional understanding, knowledge,
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(b) Two analysts join in a collaborative analy-
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to a common understanding of the data
through visualization use and possibly de-
rive joint next step actions.

Figure 1.3: Goals of individual and collaborative information visualization.

and insight into the data—different or more encompassing than would have been pos-

sible had they explored the data individually.

A challenge in designing information visualization for synchronous and co-located col-

laborative work is that mechanisms need to be designed that support the ways people

work collaboratively, as a group, during an analysis. It is still relatively unexplored how

to design these systems so that they support the generation of a common understand-

ing through collaborative interaction with and analysis of information visualizations.

With this thesis, I do not attempt to describe all the ways that technology does or could

impact synchronous co-located collaborative data analysis but instead I have a specific

set of research goals.

From information analysis practices of single analysts, we know that people have their

own data analysis approaches and styles and hence use varying techniques to solve

an analysis problem (Mirel, 2004). When new insights emerge analysts often want to

diverge from their current path of inquiry and redirect their investigations or change

their analysis approach altogether. For the design of collaborative information visual-



12 Chapter 1 Introduction

ization systems, this poses an interesting challenge. When we cannot assume a fixed

data analysis approach for a single person, we cannot assume that people in a group

would agree on one approach when working together. The question arises: how can

we build collaborative analysis systems that are sensitive to the needs of the individ-

ual, but also the needs of the group as a whole, without polarizing these needs against

each other? This has previously been identified as a research challenge in distributed

settings (Gutwin and Greenberg, 1998). Exploring ways in which small groups of peo-

ple can balance their need to analyze data individually and capitalize on the group’s

shared information processing in a co-located data analysis environment is the main

research goal of this dissertation. This research goal was, in part, motivated by an ear-

lier research project (Tang et al., 2006) that I was involved in. This project (led by A.

Tang) looked at how people transitioned between several different phases of joint and

parallel work while engaged in a route finding task on a digital tabletop display (see

Figure 1.4). We found that pairs dropped in and out of different phases of mixed-focus

collaboration (shared and individual work) (Gutwin and Greenberg, 1998) and that

their different working styles depended on preferred tools, physical arrangement, and

the incidence and handling of interference.

Figure 1.4: Collaborative route finding task over a shared information display as part
of a study presented by Tang et al. (2006).

This initial study shed some light on working styles around information analysis tasks

but the role of the information representation and the data analysis task remained

largely unexplored. Exactly how these phases would manifest in relation to informa-

tion analysis processes and how visual representations should be designed so that both
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individual as well as joint work within the same task can be supported, without restrict-

ing one another, remained an open question.

The goal of my dissertation research, therefore, is to more specifically explore and to

generate a richer description of how information visualizations and work spaces can

be designed to support a variety of work styles in collaboration. Towards this goal, I

address three specific research challenges:

Challenge 1: We do not have a clear understanding of how related work in CSCW and

Information Visualization areas applies to the specific problem of support-

ing co-located data analysis.

Challenge 2: We do not understand the data analysis practices and processes of small

teams. How do they analyze information together and how are informa-

tion visualizations used in this context?

Challenge 3: We do not know how to design collaborative information visualization

systems for co-located work. In particular, we do not know how we can

support team members transitioning from parallel to joint work phases.

To address these research challenges, I followed the methodological approach as out-

lined in the following section.

1.5 METHODOLOGICAL APPROACH

My research strategy has been to first look at general issues within my research scope

and then, in a second phase, to consider specific design challenges through specific

implementations of collaborative data analysis systems. The first phase of my research

involved summarizing a first set of design considerations from both a literature review

and a study of collaborative visualization use in a physical environment. Findings from

this phase of my work inspired the design of three specific systems for collaborative in-

formation analysis work in the second phase of my research. Two of the implemented

systems were subsequently studied in relation to the more general findings and hy-

potheses from the first phase of my work. During the first phase of my research, a

general finding emerged: when working on information analysis tasks, groups show

a strong tendency for individual work when searching for, interacting with, reading,



14 Chapter 1 Introduction

and analyzing data but frequently switch to joint work phases to validate, discuss, or

interpret information. In the second phase of my research, I focused specifically on the

question of how this switch could be supported in information visualization systems so

that both types of work are possible, well supported, and that the transition between

both is fluid. I designed three systems to shed light on this question in different data

and task domains: tree comparison in a biological context, social network analysis, and

information foraging in an intelligence analysis task.

Throughout this dissertation, I carefully chose appropriate evaluation methodologies

for the evaluation in pre-design (in the first phase) or post-design (in the second phase).

During the first phase, I used a mainly qualitative research approach to study people

collaboratively analyzing information without existing software support. The goal was

to develop a richer understanding of basic work processes that can be used to inform

interface design through observations of people’s interactions with physical artifacts.

Other researchers (e. g., Tang (1991); Scott et al. (2004)) have taken this approach,

studying how groups accomplish tasks in non-digital contexts in order to understand

what activities digital tools should support. The reasoning behind this choice is that

people’s physical interactions with these familiar artifacts and tools would closely reflect

how they understand and think about the problem at hand. For instance, Tang’s study

of group design activities around shared tabletop workspaces (Tang, 1991) revealed

the importance of gestures and the workspace itself in mediating and coordinating

collaborative work. Similarly, Scott et al. (2004) studied traditional tabletop game play

and collaborative design, focusing on the use of tabletop space and the sharing of items

on the table. While these authors studied traditional physical contexts, ultimately their

goal was to understand how to design digital tabletop tools. Both studies contributed

to a better understanding of collaborative work practices involving tables in general.

The approach taken in these two studies works well when addressing a design area

where the critical issues are poorly understood. For instance, we are uncertain how

groups will work together with information visualizations if given the ability to do so

freely (e. g. prior efforts involved systems where individuals could not work in parallel

(Park et al., 2000; Mark and Kobsa, 2005)). Furthermore, we do not know how teams

will share and make use of intermediate results, or indeed whether they will even share

and work together from the same views or artifacts of the data.
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The three case studies developed during the second phase, build both on design chal-

lenges uncovered in the first phase of my research as well as on issues uncovered during

the study of the case studies themselves. To evaluate these specific examples, I used

mixed-methods approaches, combining observational techniques, questionnaires, sys-

tem logs, and interviews to assess how the interfaces were used and influenced group

work. Details about the study methods used for each of these projects are outlined in

the respective chapters.

1.6 CONTRIBUTIONS

This research builds on previous knowledge from the areas of Information Visualization

and Computer-Supported Cooperative Work. It contributes to a richer understanding of

how groups make use of shared information visualizations on large interactive displays

to gain insight into data and solve problems. Specifically, this work includes three main

contributions:

1. This dissertation extends our evolving understanding of collaborative work prac-

tices around information visualizations. Different collaborative data analysis pro-

cesses are identified and described within different phases of joint and parallel

group work.

2. Based on three examples, this dissertation demonstrates how co-located collabo-

rative systems can be designed to support group analysis. Experimental findings

assess two of the presented designs.

3. This dissertation develops a first set of design considerations for information vi-

sualization systems in co-located shared screen settings. These design considera-

tions are derived from a literature review, a study of collaboration practices in a

physical setting, as well as two studies of group work with information visualiza-

tions in co-located settings.

These contributions are discussed and explored in more detail in the following chapters.
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1.7 ORGANIZATIONAL OVERVIEW

After this introductory chapter, the remainder of the thesis is organized as follows.

Chapter 2:

This chapter forms the first part of a literature review on collaborative information

visualization. I give an overview of previous collaborative visualization systems for

co-located work, including a systematic review of systems featured in the IEEE Vis/In-

foVis/ Vast conferences. I highlight their main features and point to open research

questions and extensions of this work.

Chapter 3:

This chapter forms the second part of my literature review and is part of my first re-

search phase. I discuss work from information visualization design, co-located collabo-

ration, and studies that look directly at collaborative visualization. I examine research

from these areas in relation to this dissertation work and derive initial design consider-

ations for the design of co-located collaborative information visualizations systems.

Chapter 4:

As part of the first phase of my research, I report on an exploratory study of individuals,

pairs, and triples engaged in information analysis tasks using paper-based visualiza-

tions. From the study results, eight specific analysis processes are derived that capture

the analysis activities of co-located teams and individuals. Comparing these with exist-

ing models of the information analysis process suggests that information visualization

tools may benefit from providing a flexible temporal flow of analysis actions and that

collaborative information visualization systems should support people in fluidly switch-

ing between different types of analysis processes. These findings extend the initial

design considerations derived in Chapter 3.

Chapter 5:

With this chapter I begin the second phase of my research. This second phase con-

tains three new collaborative information visualization systems. Here in this chapter, I



1.7 Organizational Overview 17

present the first of these three new collaborative systems for co-located data analysis,

CoTree. It is based on the considerations derived from work in the two previous chap-

ters. In CoTree, I focused on first providing ways to enable parallel work processes and

then included more subtle workspace-based mechanisms for team members to switch

to more joint work styles. The system was designed to support hierarchical data com-

parison tasks for co-located collaborative work. It supports dual-touch input, shared

and individual views on the hierarchical data visualization, flexible use of representa-

tions, and flexible workspace organization. I discuss this initial design and point to

further research questions arising from this prototype.

Chapter 6:

In this chapter, I present a tool and subsequent study in which I explored how a co-

located collaborative information visualization and analysis environment can be retrofit

from a pre-existing system design for use by a single analyst. This design takes an or-

thogonal approach to the one used in Chapter 5. I start from a system designed to

support only sequential close work and looked at minimal changes necessary to intro-

duce possibilities for parallel work. These changes were based on the results from my

previous work and the design considerations developed in Chapter 3. NodeTrix, a social

network analysis tool for individual use, was extended to enable parallel interaction in

collaborative environments. Details of the retrofitting process and results of a study

show the usability of the retrofitted system. The results support the effectiveness of

the low-cost collaborative retrofitting for collaborative network analysis and highlight

implications for practitioners.

Chapter 7:

In this chapter, I present the design of a tabletop visual analytics tool, Cambiera. Cam-

biera, supports individual and collaborative information foraging activities in large text

document collections. With the design of this system, I take an approach that includes

ideas from both Chapters 5 and 6. Similar to CoTree (Chapter 5), I propose a new

design specifically tailored towards parallel work but introduce mechanisms to allow

people to be more closely aware of each others’ activities, a suggestion that came out of

the study in Chapter 6. The design of this system focused specifically on the question of

how individual and joint analysis activities could be supported with meta-visualizations.
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‘Collaborative brushing and linking’ is defined as an awareness mechanism that enables

analysts to follow their own hypotheses during collaborative sessions while still remain-

ing aware of the group’s activities. With Cambiera, team members are able to collab-

oratively search through documents, maintaining awareness of each others’ work and

building on each others’ findings.

Chapter 8:

In the conclusions, I summarize the research objectives and contributions of this thesis

and shed light on future issues in co-located collaborative information visualization.



CHAPTER 2

RESEARCH BACKGROUND

Co-located collaborative information visualization is a research area that is relatively

new and still under explored. While there has been considerable research in both

CSCW and Information Visualization, comparatively little research has looked at the

intersection of both areas and even fewer systems have been developed specifically for

co-located data analysis. The research from both CSCW and Information Visualization,

however, includes useful information that can be analyzed and used as a basis for my

research into co-located collaborative information visualization. I have separated these

two types of literature. In this chapter, I discuss the research literature that describes

systems specifically related to my research scope: co-located synchronous work with

information visualizations. In Chapter 3, I examine relevant literature from other work

contexts to generate a set of design considerations upon which I base the research

presented in the remaining chapters.

2.1 INTRODUCTION

Only a few collaborative analysis systems have emerged thus far for the support of

co-located data analysis. However, there has been previous research in collaborative

visualization in general. Most of this work has been applied to datasets and techniques

from the scientific visualization community (e. g., for volume or flow analysis) and for

distributed synchronous collaboration in specific environments such as CAVEs or for

head-mounted displays. This focus is, for example, visible in the publication overview

of the IEEE Visualization conferences and symposia presented in Figure 2.1. This chart
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Figure 2.1: History of publications in Collaborative Visualization in the IEEE VIS, Info-
Vis, and VAST conferences. Out of a total of 1356 published papers, 26 are on Collabo-
rative Visualization (shown here), and only three (hatched and indicated by numbers
above the respective bars) covered co-located collaborative visualization.

includes only papers that directly describe collaborative visualization research. For

example, I have not included papers that mention collaboration in future work or as

work-in-progress, papers of technical solutions that could be used for collaboration

but did not include example applications (e. g., large display architectures), spectator

interfaces (for viewing but not manipulating visualizations), and ambient displays—

unless collaboration was a specific concern in interaction or visual design. The figure

shows the number of papers published in three major visualization venues: the IEEE

Conference on Visualization (VIS), the IEEE Conference on Information Visualization

(InfoVis), and the IEEE Symposium on Visual Analytics Science and Technology (VAST).

Out of 1356 papers published in these three venues—VIS since 1990, InfoVis since

1995, VAST since 2006—26 papers focused on collaborative visualization and only

three covered co-located collaboration. These three particular conferences were chosen

as the top venues representing research interests of the larger visualization community.

Within the area of distributed collaborative visualization, one research focus has been

on architectures and synchronization mechanisms for allowing efficient synchronous

remote work with large scientific datasets (e. g., Ang et al. (1993); Li et al. (2006);

Renambot et al. (2009); Wood et al. (1997)). Much of this research is focused on appli-

cations in virtual reality (VR) over the web (e. g., Ang et al. (1993)), in GRID comuting

(e. g., Matsukara et al. (2004); Jankun-Kelly et al. (2003)), or for special hardware

environments such as CAVEs (see Leigh et al. (1999)). Grimstead et al. (2005) pro-

vide an overview and taxonomy of 42 different distributed collaborative visualization

approaches.
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During the course of my PhD research, distributed web-based information visualization

applications have emerged with a focus on making information visualization accessible

to an internet-sized (mostly lay) audience (e. g., Danis et al. (2008); Dimov and Mulloy

(2009); Paper (2009); Smallthought Systems (2009); Viégas et al. (2007)). With these

systems, the research focus has shifted from the more technical aspects of network

latency, synchronization, and view updates to more social, human-centered questions

such as how wide audiences can be engaged to discuss and explore information, how

laypeople can effectively share data and visualizations online, or how collaborative

contributions can be effectively structured and integrated into a shared visualization to

ignite further discussion and common ground formation (Heer et al., 2008).

My research is related to previous approaches in the scientific visualization community

in that it involves the use of visualizations for collaborative work in specific hardware

environments. In contrast to previous approaches in the scientific visualization, how-

ever, my hardware environments do not involve virtual reality technology but consist

of single, large, and interactive displays such as tabletop or wall displays. Only a few

projects have explored similar work contexts for data analysis and as the most related

research, these will be discussed next.

While I have limited the presentation of the related work by the type of hardware and

co-located collaborative work environment, my research relates to the collaborative

web-based approaches in that I focus on human-centred questions for the support of

collaborative data analysis activities. In contrast to much work in the Scientific Vi-

sualization community, I do not focus on the development of software and network

architectures or synchronization protocols for supporting collaboration.

In the remainder of the chapter, I discuss systems related to co-located collaborative

data analysis. The system features will be put in context to the research goal of this

dissertation: the study of the tradeoff between private and shared work in collaborative

information visualization.
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2.2 COLLABORATIVE SCIENTIFIC VISUALIZATION ON A SHARED

DISPLAY

The 3D Responsive Workbench was an early digital tabletop information exploration

system (Krüger et al., 1995; Krüger and Fröhlich, 1994) with the goal to replace com-

puter desktops and provide a work situation more similar to those encountered in an

architect’s office, in surgery, or scientist research labs. It used a horizontal surface to dis-

play stereoscopic 3D information which was viewed through shuttered glasses. Input

was facilitated through tracked gloves with gesture recognition. Speech recognition

and audio feedback were provided as other possible input modalities.

Later papers focused on visualization applications (Wesche et al., 1997; Durbin et al.,

1998) for the Responsive Workbench as well as on extensions to provide two people

with independent input and corrected views of the 3D scene (Agrawala et al., 1997).

Visualization in fluid dynamics was one of the presented applications (Wesche et al.,

1997). Here, the viewer could inject particles and streamlines into a flow, control

cutting planes, or select other visualization parameters. In this example, the main view

of the scene was shared and input had to be negotiated between all group members.

For a collaborative teaching scenario, the possibility of different views for two group

members was discussed by Agrawala et al. (1997). The authors presented an example

of a student and a teacher exploring a 3D model.Only the teacher could see the labels

appear on the model and, hence, had a slightly different view of the scene. Each input

in this example, still controlled the underlying view for both group members. In an

air traffic visualization example (Agrawala et al., 1997), this problem was solved by

partitioning the space into two distinct regions and each viewer was responsible for

completing work only on their side. This way, problems of interference with a shared

view were specifically avoided which allowed both people to work in parallel.

Around the same time as the Responsive Workbench was being developed in Germany,

the Naval Research Laboratory in Washington, DC worked on a similar setup for their

Virtual Workbench (Obeysekare et al., 1996). An almost identical setup was used with

a stereoscopic display requiring the wearing of shuttered glasses, tracked gloves, and

possible speech recognition and audio feedback (Figure 2.2). The Virtual Workbench,

however, was never developed into a system that allowed independent viewpoints or

mechanisms for several people to simultaneously interact with objects in the virtual
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Figure 2.2: The Virtual Workbench. Image reprinted with permission from: Obeysekare
et al., Virtual Workbench–A Non-Immersive Virtual Environment for Visualizing and Inter-
acting with 3D Objects for Scientific Visualization, Proc. of IEEE Visualization, © 1996
IEEE.

environment. However, a few visualizations were introduced that were meant to be

looked at and discussed by several people, including a real-time jet simulator, molecular

docking, and flow visualization.

Both the responsive and virtual workbench have inspired more recent work on table-

based virtual environments (e. g., Choi et al. (2005)) and multi-user stereoscopic dis-

plays (e. g., Kitamura et al. (2001)). The main benefit of these environments lies in

their ability to display 3D information in a shared place where collaborators can come

together, view the information, and explore, discuss, interpret, and analyze it. The

ability to interact with the data, however, may be limited. Often interaction has to be

negotiated as the whole view of a 3D model may be influenced when one collaborator

decides to change certain parameters (e. g., the rotation, perspective, or view position).

This effectively hinders exploration of the data in parallel making these environments

difficult to navigate for work in which several team members may want to follow dif-

ferent exploration paths.

More recently a trend towards large horizontal and vertical touch-sensitive displays

has emerged and several solutions have been proposed for these environments. With

a shift to these types of displays, the question of synchronous, parallel interaction has

also received greater attention, as discussed next.
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2.3 COLLABORATIVE INFORMATION VISUALIZATION ON A

SHARED DISPLAY

Besides my own collaborative information visualization systems (presented in later

parts of this dissertation), there are relatively few other examples that have focused

on joint data analysis with information visualizations. Next, I discuss systems that

had specific data analysis components and involved information visualizations and/or

information presentation techniques.

The Personal Digital Historian (PDH) project (Shen et al., 2002) displayed digital col-

lections of photos, video, and text documents to groups of people with the goal to

encourage conversation and storytelling about shared past histories. This system was

built for casual use by families or friends and used visualization techniques to organize

digital documents for exploration by these groups of people. PDH included several

simple graphical techniques to organize documents on the table: fisheye distortion,

timelines, spatial (map-based) layouts, and hierarchical layouts (Vernier et al., 2002).

Fisheye distortion was implemented to enlarge documents in specific regions of the

table, either on the inside (called the “central focus effect”), or towards the edge of

the table (called the “central black hole effect”). Interaction techniques for opening

and closing branches of a tree and their consequences for the hierarchical layout were

discussed in more detail by Vernier et al. (2002). In particular, the problem of how

to lay out child nodes without overlap when a certain branch is grown outward was

discussed. The layout challenge was tackled here by decreasing sizes of nodes and

placing them in a fan or circle around the parent node or by letting each group mem-

ber define where child nodes should be displayed on the table. The first solution is a

more standard approach also used within many other graph drawing techniques, while

the latter suggests that in tabletop interfaces human-specified approaches may often

be appropriate or necessary alternatives even if this results in a less clean data layout

compared to the that of an automatic layout algorithm. The system only allowed one

input point and people could not work in parallel and actively explore different parts

of the data at the same time. Thus, collaborative work was limited to viewing and

discussing the data but team members could not divide the work load and follow their

own exploration paths.
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The PDH system is one example of how simple representational techniques can be used

to structure and lay out information on a tabletop display. The DTLens system (Forlines

and Shen, 2005) demonstrates how focus+context presentation techniques can be used

for the exploration of visualizations in forms of large maps and diagrams on an interac-

tive tabletop. This system addressed an important issue for collaborative information

explorations systems: when multiple people want to simultaneously interact with infor-

mation that is spatially fixed (e. g., as in maps) the parallel exploration of information

may be difficult to perform when interests between group members differ. DTLens

addressed this problem by letting multiple people geometrically distort, annotate, and

explore the visual information simultaneously. The system used a DiamondTouch (Di-

etz and Leigh, 2001) to provide identifiable input simultaneously, allowing up to four

people to control lenses that enabled detailed views of information within a larger con-

text. For example, a lens could be used to zoom into a map in a small portion of the

display, while maintaining the context around that zoomed in area.Thus, each person

could focus on a portion of interest, without hindering another person’s ability to focus

on something else within the same dataset. Interaction techniques with the lenses were

designed to encourage rapid exploration.

A recent research direction has been the development of gestures for use with informa-

tion visualizations on touch-sensitive displays. While this research typically does not

focus on collaboration, it helps to inform the design of interaction techniques with data

on large displays and is, therefore, related to the work of this dissertation. One such

project, by North et al. (2009), looked at the problem of selecting and interacting with

multiple information items on a multi-touch tabletop display. The researchers studied

multi-object selection, grouping, and spreading tasks. In particular multi-object selec-

tion is an important interaction for information visualization tasks, as interactions such

as filtering, clustering, highlighting, detail-on-demand, or zoom often involve several

items. By studying both physical as well as digital contexts, the authors derived a

multi-touch gesture vocabulary which can be used to inform future gesture design for

direct-touch information visualization system.

While the project by North et al. (2009) looked at low-level interactions that can be

common in many different types of information visualization tasks, the research by

Frisch et al. (2009) looked at a more specific information visualization task: multi-

touch and pen-based diagram or graph editing. By studying participants performing
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spontaneous gestures for operations such as creation, movement, and deletion of dia-

gram elements, the researchers derived a set of gestures for node-link diagram editing.

There is also a rich literature on gesture design for other task contexts that can be

useful when considering gesture design for information visualization (e. g., Wu and

Balakrishnan (2003); Wobbrock et al. (2009)).

Some projects have discussed the implications of perception on reading information

visualizations on large displays. A study by Yost and North (2005) evaluated the scal-

ability of information visualizations in regards to human perceptual capabilities. Their

larger research goal was to address questions such as how much information humans

can effectively perceive or whether visualization for large displays need to differ from

those for desktop displays. Yost and North studied three visualizations across a small

and large, high-resolution display and compared three tasks asking for detailed exam-

ination of data and four overview tasks. The authors conclude that the visualizations

that were studied were perceptually scalable, as participants were—on a per attribute

basis—faster in the large screen condition without a decrease in accuracy. While physi-

cal navigation along the large display was necessary, participants were able to integrate

information from about 2.7m apart. While this study’s focus was not on collaboration, it

provided several guidelines for designing visualizations for large displays: considering

encodings according to viewing angle, choosing visualizations for scalable encoding,

providing global and local legends, and strategic label placement.

A study by Wigdor et al. (2007) evaluated the effect of perspective on the perception

of graphical variables on a large display. The researchers tilted the display to achieve

different viewing angles for participants and studied how well participants were able

to perceive graphical variables such as length, position, angle, slope, or area. The study

suggests that care should be taken in positioning and choosing the appropriate visual

encoding as some graphical elements are more robust to view distortion than others.

This study is also important to consider for collaborative work as group members might

be positioned on different sides of the display, thus viewing shared visualizations from

different directions. However, it still has to be further evaluated how the legibility of

information visualizations is affected by different viewing directions and in context of

more complex data displays (such as charts, parallel coordinates displays, etc.). So far,

it is not known if, for example, turning 2D representations upside-down would lead

to inaccurate readings of the data. Wigdor et al. (2007) also evaluated how well par-
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ticipants were able to perceive graphical variables across two adjacent displays. They

conclude that visualizations should not be compared across display orientations (e. g.,

between a tabletop and a wall setup) and again, that certain visual variables are better

suited for this comparison than others.

Multi-display setups are also currently being investigated for collaborative work envi-

ronments, many including data analysis setups. The following section discusses some

of these projects.

2.4 COLLABORATIVE VISUALIZATION IN MULTIDISPLAY

ENVIRONMENTS

Tabletops have also been integrated in multi-display environments (MDEs) to support

information exploration work. In these environments varying views of the same data

can be shown on different displays around a room, effectively increasing the display

space available for data exploration and comparison.

Forlines et al. showed two projects in which a tabletop serves a coordinating function

in a setting with several vertical displays and a tablet PC. In the first project, Forlines

et al. (2006) retrofitted Google Earth to support collaborative exploration of geospatial

data.Several instances of Google Earth ran on connected displays, supporting different

but coordinated viewpoints of the data on three wall displays. A tabletop display was

used as the primary input device to coordinate all instances of Google Earth shown on

these separate displays. The viewpoints could be changed in a coordinated manner, but

information content could also be individually changed for each display. This made it

possible to show different layers of information on each display (e. g., streets or airline

routes). The table supported multiple independent input points so that each person

could control different viewpoints at the same time. Independent work was facilitated

by allowing the unlinking of views so that a single team member could explore parts of

the information without affecting other views of the scene. Furthermore, when working

alone, a group member could coordinate his or her interactions from a separate tablet

PC in order not to disturb others by opening large menu dialogs and, thus, interfering

with the global view on the tabletop. The system does not allow team members to

synchronously interact with the same data visualizations.
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In the second project (Forlines and Lilien, 2008), a single-user visualization application

for protein visualization, JMol, was retrofitted to be used collaboratively in a multi-

display environment.The environment consisted of a tabletop for controlling the other

displays, several wall displays, and a tablet display. The table served as the central coor-

dinating unit for selecting and changing views (e. g., viewpoints and representations)

on the wall displays. The tablet was used to allow for fine-grained selection of small

protein structures which would otherwise be difficult given the input resolution of the

tabletop display. While several people could interact with the table and change views

of the data, only one could do so at the same time. Parallel exploration of different

parts of the data was not specifically supported.

The project WeSpace (Wigdor et al., 2009) presented a walk-up-and-use environment

for collaborative research. The environment consisted of laptops that were brought

in by participating group members, a tabletop, and a large wall display. Again, the

tabletop served a coordinating function for views sent from the different laptops to the

wall and tabletop display. The focus of this project was on allowing researchers to bring

their own visualization applications to a joint discussion space rather than presenting

them with a custom built visualization tool. The WeSpace tool itself consisted merely of

a networking infrastructure to share views from clients installed on the laptops, a layout

manager to control the organization of these views on the shared display, and LivOlay

(Jiang et al., 2008), a tool to enable overlay and registration of different views of the

same data on the shared display. In this setup, individual work is easily possible on

each person’s individual laptop, while shared viewing, discussion, and interpretation

can happen on the shared wall display. However, since visualizations are typically

controlled from a single laptop, parallel exploration of the same data is not as easily

possible—unless researchers have previously shared the data and tools with each other.

2.5 SUMMARY

Within collaborative visualization research, the challenges of distributed work have so

far received greater attention than those of co-located analysis work. However, humans

have considerable experience and expertise working together in shared environments,

making this form factor a particularly promising one to investigate. In this chapter, I
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Name Max. Group
Size

Data Independent
Input

Independent
Views

Responsive Workbench 2 Scientific Yes Yes
Virtual Workbench Small group Scientific No No
Personal Digital Historian 4 Document

collections
No No

DTLens 4 Geospatial Yes Yes
Forlines et al. (2006) Small group Geospatial Yes Yes
Forlines and Lilien (2008) Small group Scientific No Yes
WeSpace Small group Group depen-

dent
Yes Yes

Table 2.1: Collaborative visualization systems discussed in Chapter 2.

introduced several systems that support collaborative data exploration or analysis on

shared displays. A summary of the presented systems can be found in Table 2.1. With

these systems, researchers have dealt with the problem of providing individual vs. joint

work in several ways. Four systems (see Table 2.1) offered independent input and five

offered independent views to each team member. With emerging display technologies

such as multi-touch tabletop or wall displays, independent input for each group mem-

ber becomes easier and cheaper to achieve without specific hardware devices. However,

the question of how to deal with people’s desire to explore parts of the information in-

dividually, has so far not received much attention outside of multi-display visualization

environments. The DTLens system approached the problem by offering specific visual-

ization tools (lenses) to provide team members individual, customizable views. This

approach of allowing individual work with specific view of the same underlying dataset

is closest in spirit to many of the research approaches taken in later parts of the thesis.

This chapter forms the first of a two-part literature review. In the next chapter, I review

more literature from both research on computer-supported cooperative work as well

as information visualization and analysis. The review elicits a first set of design con-

siderations for collaborative information visualization environments for shared large

displays.





CHAPTER 3

A FIRST SET OF DESIGN CONSIDERATIONS

FOR COLLABORATIVE INFORMATION

VISUALIZATION

This chapter forms the second part of my literature review. The main contribution of

this chapter is an analysis of relevant literature which I use to derive a first set of de-

sign considerations for co-located collaborative information visualization—drawn from

a wide variety of literature sources. 1 The chapter focuses on the problem of support-

ing both parallel as well as joint collaborative data exploration and analysis in a shared

space. This discussion of the literature is conducted with a particular purpose in mind;

the intention is that this discussion will form the beginning of design considerations

that will be modified and extended through further research in collaborative informa-

tion visualization. My extensions are presented in the later chapters.

In this chapter, I discuss related literature from the area of Computer Supported Co-

operative Work, Information Visualization, and empirical work that looks directly at

1 Portions of this chapter were previously published in (Isenberg and Carpendale, 2007) © 2007
IEEE. Portions reprinted, with permission, from (1) IEEE Transactions on Visualization and Com-
puter Graphics, Interactive Tree Comparison for Co-located Collaborative Information Visualization,
Petra Isenberg and Sheelagh Carpendale; (2) (Heer et al., 2008) Information Visualization-Human-
Centered Issues and Perspectives, volume 4950 of LNCS State-of-the-Art Survey, 2008, Creation and
collaboration: Engaging new audiences for information visualization, Jeffrey Heer, Frank van Ham,
Sheelagh Carpendale, Chris Weaver, and Petra Isenberg. © Springer Verlag, 2008. With kind permis-
sion of Springer Science+Business Media. Any use of “we” in this chapter refers to Petra Isenberg
and Sheelagh Carpendale.
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collaborative use of information visualization. I begin the overview of relevant litera-

ture by discussing research on mixed-focus collaboration or the trade-off between in-

dividual and shared collaborative work. Then, I organize the discussion of the related

literature based on three aspects related to collaborative data analysis systems. This dis-

cussion is structured according to: Setting up a collaborative environment, supporting

social interaction around data, and designing information visualizations for co-located

collaboration.

3.1 MOTIVATION

As previously discussed, current information visualizations have mostly been designed

to support a single person working in a desktop environment. Thus, while most infor-

mation visualization tools include mechanisms for sophisticated interaction with data,

they have only limited facilities to support the collaborative activity of a team (Mark

et al., 2003). Attempting to coordinate collaboration around a system designed to

support only a single person, however, can be awkward and unnatural (e. g., (Stew-

art et al., 1999; Amershi and Ringel Morris, 2008)). Previous research on collaborative

technology can shed light on questions and issues that need to be considered during the

development of co-located collaborative information visualizations. Research within

Computer-Supported Cooperative Work (CSCW) is worthwhile to consider since it has

developed a number of considerations for systems designed to support co-located col-

laboration.

However, the requirements of collaborative data analysis tasks and the nature of work

with information visualizations may pose particular domain-specific challenges. Work

around information visualizations such as discovery and analysis tasks differs from

other common collaborative work scenarios like design projects, photo sorting, or doc-

ument editing in several ways. First of all, the outcome of an information analysis

is not typically a product—such as a finished design, organized photo collection, or

an edited document—but is often an intangible understanding or insight of the infor-

mation that was analyzed. This has been cited as a challenge for the design and in

particular the evaluation of information visualization systems (Plaisant, 2004). Thus,

the support of collaboration around the less concrete work outcomes of data analysis
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tasks may require particular design considerations. Secondly, information visualiza-

tions have both an interaction component and a data representation component. Both

of these components may need rethinking and redesigning to be effective in a col-

laborative work scenario and in non-desktop environments. Research in information

visualization draws from the intellectual history of several traditions, including com-

puter graphics, human-computer interaction, cognitive psychology, semiotics, graphic

design, statistical graphics, cartography, and art (Munzner, 2002). Therefore, I take a

closer look at this literature as well when attempting to generate a richer description

of possible design considerations for co-located collaborative information visualization

systems. Next, I first discuss literature related to the specific research goal of this dis-

sertation: the study of the trade-off between individual and shared collaborative data

analysis activities. Then, the remainder of the chapter discusses related literature on

varying topics related to building a collaborative data analysis system for co-located

collaboration. It is in this part of the chapter, that the first set of design considerations

for this type of work is derived.

3.2 SUPPORTING MIXED-FOCUS COLLABORATION

One goal of my research is to study the trade-off between private and shared work

in collaborative information visualization. Therefore, I first introduce relevant related

research that has discussed or studied this challenge in other contexts.

Many group activities, such as brainstorming or planning, involve phases of mixed-focus

collaboration (Gutwin and Greenberg, 1998) in which group members transition from

loosely coupled, parallel work to closely coupled, group work (e. g., Dourish and Bel-

lotti (1992); Olson and Olson (2000)). It has also been noted, that the spatial partition-

ing and use of the workspace is influenced by different work phases in a collaborative

setting (Scott et al., 2004). For example during parallel work, people make use of spe-

cific personal territories on shared displays while they tend to use other specific regions,

group territories, when interacting more closely as a group.

For visualization systems the need to support both individual as well as group work

has also been previously identified. A study by Park et al. (2000) in distributed CAVE

environments, for example, discovered that when the visualization system supported
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an individual work style, participants preferred to work individually on at least parts of

the problem. In collaborative visual analysis, for example, group members may need

to be able to work on their own sub-projects, in which tentative hypotheses can be

created, followed, and rejected. However, the analysts’ desire for private work may

be in tension with their desire to capitalize on the group’s shared effort. The group

may produce pieces of information that could be useful to the analyst; but the analyst,

immersed in his or her work, may not want to be distracted (Brennan et al., 2006;

Weaver, 2007).

This tension has been previously discussed for other collaborative scenarios. Gutwin

and Greenberg (1998) suggest that task-dependent compromises and additional design

work are necessary to balance both individual and group needs in distributed collabo-

ration. Several techniques have been proposed in distributed collaborative visual ana-

lytics research to address this problem. Brennan et al. (2006), for instance, merge and

fuse distinct private views on node-link graph representations, in order to show infor-

mation overlap and common ground of graph nodes and information items explored

and looked at by distributed collaborators. A similar idea, however using computa-

tional agents, was implemented in a distributed analysis system by Keel (2006). Here,

the computational agents are used to identify when an individual had uncovered po-

tential relationships between information items in his/her workspace; this insight is

then automatically relayed to the larger group of collaborators. A more explicit sharing

mechanism was implemented in CoMotion (Chuah and Roth, 2003). Here, objects and

events can be explicitly shared by placing them in a shared view and implicitly anno-

tated with interaction history information from different collaborators. These projects

show the need to balance both group and individual contributions in a data analysis

scenario, however, contributions from remote collaborators were the focus. The ques-

tion arises how this challenge of trading off parallel and joint work in collaborative

data analysis, can be addressed in co-located collaboration on a shared display.

Mixed-focus collaboration has recently been shown to apply to the work scenario that

is the focus of this dissertation: synchronous co-located collaboration with information

visualizations over shared displays. In the previously mentioned study by Tang et al.

(2006), we2 studied different types of lenses and filters to understand different types

2 This paper was published as (Tang et al., 2006). Thus any use of “we” in this paragraph refers to
Anthony Tang, Melanie Tory, Barry Po, Petra Isenberg, and Sheelagh Carpendale
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of group cohesion. We noted that a trade-off is necessary between providing only a

single or multiple independent instances of data views. With a single shared repre-

sentation individuals’ abilities to work independently may be compromised, yet using

separate copied views may prevent many group collaborative dynamics from emerging.

Our work focused on identifying different coupling styles and influences of tool use and

we discussed the influence of the information visualization and the data analysis task in

less detail. However, this and the above mentioned distributed projects have one main

characteristic in common: they offer—to varying degrees—the possibility for individu-

als to work with their own views of the data to support parallel work styles. Another,

less explored possibility involves making shared visual representations accessible for

concurrent input. For example, one could imagine techniques that allow the parallel

manipulation of several data characteristics, such as nodes in a tree, colour scales for

a set of data items, or changing representations for parts of a dataset in focus. This

latter possibility includes many possibilities for view conflicts, for example, when two

collaborators want to manipulate the same data items. Design considerations for both

of these strategies to support joint and parallel work are discussed next in the context

of how to set up a collaborative environment, how to support social interaction around

data, and how to design visualizations to support co-located collaborative work.

3.3 SETTING UP A COLLABORATIVE ENVIRONMENT

The setup of a collaborative environment has an important impact on the possibilities

for each individual in a collaborative work scenario. The physical characteristics of an

environment influence who can interact with the visualizations, how well the visual-

izations can be seen, who can best see the visualizations, how the group members are

positioned relative to each other, and how well they can discuss the data with each

other. Therefore, the main factors that influence these aspects of collaborative work

are discussed next with their impact on individual and group work.
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3.3.1 Display Size

In collaborative systems, screen space has not only to be large enough to display the

required visual representation(s), it also has to be viewed and shared by several people.

When people would like to work in parallel, independently of one another, they may

want to move parts of a visualization off to the side and work on it without disturbing

others. In particular in this case, the size of the screen is critical in supporting people’s

desire for a private work area (Scott et al., 2004). In addition, as the number of people

using a shared information display grows, the size of the display and workspace needs

to be increased in order to provide a large enough viewing and interaction area that

gives adequate access to all group members.

3.3.2 Display Configuration

Several configuration possibilities exist that could increase the amount of available dis-

play space, all of which will affect the type of visualization systems that are possible

and the type of collaboration work that would be most readily supported. For instance,

one could provide team members with interconnected individual displays, as in the

ConnecTable system (Tandler et al., 2001), or one could make use of large, interactive,

single-display technology, like display walls or interactive tabletop displays (e. g., Stew-

art et al. (1999); Tang et al. (2006)). An additional possibility is to link wall, table, and

personal displays (e. g., Wigdor et al. (2007)), or to consider immersive displays (e. g.,

Krüger et al. (1995); Obeysekare et al. (1996)). The type of setup most appropriate for

an information visualization system will depend on the specific task and group setup.

For example, individual interconnected displays allow for private views of at least parts

of the data which might be required if data access is restricted or the need for paral-

lel work is particularly high. In addition, private displays can be used for interactive

operations that have specific access restrictions. Tabletop displays have been found

to encourage group members to work together in more cohesive ways, whereas wall

displays are beneficial if information has to be discussed with a larger group of people

(Rogers and Lindley, 2004). It has been shown that people are able to coordinate both

parallel as well as joint work on tabletops for data analysis but that tools and visual

design strongly influence what type of work style people tend to adopt (Tang et al.,

2006).
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3.3.3 Input Type

In the common desktop setup, input is provided for one person through one keyboard

and one mouse. To support collaboration, ideally, each person would have at least

one means of input (e. g., Stewart et al. (1999); Amershi and Ringel Morris (2008)).

In addition, it would be helpful if this input was identifiable, making it possible to

personalize system responses. If a collaborative system supports multiple input points,

at least one per person, it has to be coordinated how all team members can access the

shared visualization and data sets. For example, synchronous interactions on a single

representation may require the design and implementation of new types of multi-focus

visualizations. Ryall et al. (2006) have examined the problem of personalization of

parameter changes for widget design, allowing widgets to be dynamically adapted for

individuals within a group. Similar ideas could be implemented for personalization of

information visualizations during collaborative work. This design problem is discussed

further in Section 3.5.2.

3.3.4 Display and Input Resolution

Resolution is an issue both for the output (the display) and for the input. The dis-

play resolution has a great influence on the legibility of information visualizations and

the amount of data that can be displayed. Large display technology currently often

suffers from relatively low display resolution so that visualizations might have to be

re-designed so that readability of text, colour, and size are not affected by display res-

olution. Also, large interactive displays are often operated using fingers or pens which

have a rather low input resolution. Since information visualizations often display large

datasets with many relatively small items, the question of how to select these small

items using low input resolution techniques becomes an additional challenge that needs

special attention (Isenberg et al., 2006b; Voida et al., 2009). These considerations are

important for both parallel and joint work styles.
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3.4 SUPPORTING SOCIAL INTERACTION AROUND DATA

Pinelle et al. (2003) provide a set of basic operations that should be supported by

groupware systems to help collaborators carry out their tasks as a team. These me-

chanics of collaboration can be grouped into those describing communication and those

describing coordination aspects of collaboration. Collaborative information visualiza-

tion systems, like other groupware systems, require support for both—communication

and coordination—to support social interaction among team members, in particular,

when they switch between phases of individual and joint work. Further research relat-

ing to issues of shared interactions in collaborative information visualization scenarios

is discussed next.

3.4.1 Supporting Communication

Communication is an important part of successful collaborations. People need to be

able to trigger conversations, communicate their intentions, indicate a need to share

a visualization, and to be generally aware of their team members’ actions. Co-located

synchronous work has a number of characteristics for specific communication support

(Olson and Olson, 2000): a shared local context in which participants can interact with

work objects, rapid visual and audio feedback, multiple channel information exchange

with voice, gestures, etc., and visibility of others’ actions. However, the nature of

collaborative work with information visualizations impacts team members’ ability to

communicate. These impacting factors are discussed next, in relation to explicit and

implicit communication in a workspace (Pinelle et al., 2003).

Explicit Communication

The possibility for direct exchange of information through many channels such as voice,

gestures, and deictic references is one advantage of co-located collaboration (Olson and

Olson, 2000). The ease of referencing items in a shared space by simply pointing to

them—often combined with verbal alouds—can improve communication about shared

items in the workspace (Olson and Olson, 2000). However, this ease of reference to

joint objects can be limited in situations where group members are working in parallel.
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In these situations, group members may be working either with very different parts

of the data, different data altogether, or may be viewing the same data but using dif-

ferent representations (e. g., Figure 3.1). Although being in a shared space, here the

reference to an information item may be difficult because—in particular, when visual-

izations are large and complex—the context may not be immediately understandable

and transferable to another view of the data. For example in Figure 3.1, we see two

people working with two representations of the same data. Person A is pointing at an

information item to initiate a conversation about it with Person B on the other side of

the table. B now has the difficult task of finding the data item in his or her working con-

text, or has to switch to the other side of the table and work more closely together with

A and, thus, abandon his or her current work context altogether. The problem here lies

in the registration of an item from one information space to the next. The team mem-

ber has to perform a mental navigation task to the new information space, a problem

which has been well identified in the literature (e. g., Spence (1999)). The problem of

mental navigation in complex information spaces—often represented by information

visualizations—lies in the fact that simple spatial referencing is not easily possible. In

visualization environments each interacting person has to navigate two types of spaces.

First, there is the physical interaction in the workspace. Secondly, there is interaction

within the data space. Here the interaction may involve zooming into data, changing

spatial variables, or selecting certain information items. The mapping of the physical

to the data space may be different for every visualization or every different view in a

visualization, limiting the way in which items can be referred to spatially.

While, this problem of reference exists, visual representations can be designed to sup-

port explicit communication across views. For example, meta-visual overlays can be

designed that identify an information item that is pointed to in one view, in all other

views of the same data. Also, it has been shown that the ability to annotate data and

share insights in a written way is an essential part of the discovery process in distributed

information visualization settings (Heer et al., 2007). Annotation is a form of explicit

communication, either with oneself at a later point in time, or with other collaborators

looking at the same data. In digital systems, annotations of data items with messages

of all types, written, voice, etc. could further support communicative needs of groups,

in particular in phases of parallel work.
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Figure 3.1: Two collaborators working in parallel with different representations of the
same data. A is pointing to a data item while Person B on the top is trying to establish
which item the other is referring to.

Implicit communication

In co-located non-digital collaboration, people are accustomed to gathering implicit

cues about team members’ activities through such things as body language, verbal

alouds, or by hearing items being moved in the workspace (Olson and Olson, 2000).

This is an active research area in distributed collaboration since the co-located evi-

dence does not naturally become distributed. While co-located collaboration benefits

from many of the co-present advantages, there are still issues that arise. Some exam-

ples include digital actions that are not always readily visible (cursors are hard to see

on large screens), menu actions that can affect a remote part of the screen, the dif-

ficulty of identifying data items in different views, as well as the general problem of

change awareness (Rensink, 2005). Thus, while implicit communications are present

and potentially, at least to some extent, noticeable in co-located settings, some system

changes made by a collaborator can still remain unnoticed if the collaborative system

does not provide appropriate feedthrough (i. e., a reflection of one person’s actions on

another person’s view) (Pinelle et al., 2003).

In collaborative information visualization, for example, it might be important to con-

sider appropriate awareness for operations that make changes to the underlying dataset.

Imagine a co-located system in which each collaborator works in parallel on a different

view using a different file system representation. If one collaborator discovers an old

version of a file and decides to delete it, this change might go unnoticed if the other per-
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son is looking at a view of the data that does not include the particular file or it might be

completely surprising to the other person to see a file in their representation disappear.

Some research has proposed policies to restrict certain members from making unsus-

pected global changes to a dataset (Ringel Morris et al., 2004). Earlier research on

information visualization discussed the differences between view and value operators

(e. g., (Chi and Riedl, 1998)). View operations make changes to the view of a dataset

only, while value operations make changes to the underlying dataset itself. Most recent

research in multiple-view visualization tends to favour view operations (filtering of un-

wanted data rather than deletion). This seems likely to be most appropriate during

collaboration as well. However, when value operations are required during an analysis,

appropriate awareness mechanisms have to be implemented. In a system by Tobiasz

et al. (2009), we3 explored this issue in more depth. We proposed a meta-visualization

between individual views of the data which allows collaborators working in parallel to

remain aware of the scope of their local interactions on other views of the data.

It has also been shown that the location and orientation of artifacts are used to support

implicit communication in non-digital settings. They can, for example, suggest who is

working with an artifact and communicate the intent of one team member to hand-over

or pass on an artifact (Kruger et al., 2004). It has also been shown that this translates

to digital settings (Kruger et al., 2005). Thus, an important design consideration is

the support of artifact mobility and freedom of orientation, in particular when parallel

work is supported by giving people different views of the same data.

3.4.2 Supporting Coordination

In group settings, collaborators have to coordinate their actions with each other. Coordi-

nation involves activities such as the transfer of resources in the workspace, protecting

one’s work, or storing items in the workspace (Pinelle et al., 2003).

Typical information visualization systems for individual use, however, impose a fixed

layout of windows and controls in the workspace. In contrast, previous research has

shown that, on shared workspaces, collaborators tend to divide their work areas into

personal, group, and storage territories (Scott et al., 2004). This finding implies that

3 This paper was published as (Tobiasz et al., 2009). Thus any use of we in this paragraph, refers to
Matthew Tobiasz, Petra Isenberg, and Sheelagh Carpendale.
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a group interaction and viewing space may be beneficial in collaborative data analysis,

in particular when groups need to be supported in transitioning between individual

and shared work. In a shared group space, all collaborators can work on a shared

representation of the data or they can share tools and representations. In a personal

space, individual team members may more commonly explore the data separately from

others. Flexible workspace organization can offer the benefit of easy sharing, gather-

ing, and passing of representations to other collaborators. If visualizations can be

easily shared, team members with different skill sets can share their opinions about

data views, suggest different interpretations, or show different venues for discovery.

By offering mechanisms to easily rotate and move objects, aspects such as comprehen-

sion, communication, and coordination can be further supported (Kruger et al., 2004).

Rotation can, in particular, support coordination by establishing ownership and cate-

gorizations. By allowing free repositioning and re-orientation, we can also make use

of humans’ spatial cognition and spatial memory and possibly better support informa-

tion selection, extraction, and retrieval tasks. Free arrangements of representations in

the workspace, thus, can support changing work styles. Representations can be fluidly

dragged into personal work areas for individual or parallel work and into a group space

for closer collaboration. Mechanisms for transfer of and access to information visual-

ization in the workspace should be designed in a way that they respect common social

work protocols (Kruger et al., 2004; Scott et al., 2004).

3.5 DESIGNING INFORMATION VISUALIZATIONS FOR

CO-LOCATED COLLABORATION

Even though they were proposed with an individual use in mind, many known infor-

mation visualization guidelines still apply to the design of information visualizations

for co-located collaborative use (e. g., Bertin (1983); Tufte (2001); Ware (2000)). This

section discusses changes and additions to factors that need to be considered when

designing information visualizations for co-located collaborative settings. Thus, much

of this discussion simply delineates research questions that may be of specific interest

when designing information visualizations to support co-located collaboration.
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3.5.1 Representation Issues

Spence (2007a) defines representation as “the manner in which data is encoded,” sim-

plifying the definition of representation as a formal system or mapping by which data

can be specified (Marr, 1982). The concept of representation is core to information

visualization since changes in representations cause changes in which types of tasks

are most readily supported. As in Marr’s example (Marr, 1982), the concept of thirty-

four can be represented in many ways. To look at three of them; Arabic numerals,

34, ease tasks related to powers of ten; Roman numerals, XXXIV, simplify addition and

subtraction; and a binary representation, 100010, simplifies tasks related to powers

of two. Not surprisingly, Zhang and Norman (1994) found that providing different

representations of the same information to individuals provides different task efficien-

cies, task complexities, and changes decision-making strategies. Questions arise as to

what are the most effective representations during collaboration. Will certain represen-

tations be better suited to support small group discussions and decision making? Will

multiple representations be more important to support different people’s interpretation

processes? Will new encodings or representations be needed for collaborative work sce-

narios? Appropriate representations might have to be chosen and adapted depending

on the chosen display type; whether completely new designs are required is not yet

clear. For example, spatiality or the use of position/location is commonly an important

aspect of representation semantics. However, spatiality as manifested in territoriality

is a significant factor for communication and coordination of small group collaboration

(Scott et al., 2004). It is an open question as to whether there is a trade-off between

these two uses of spatiality.

In addition, different representations may have to be accessible in an interface because,

in a collaborative situation, group members might have different preferences or con-

ventions that favour different types of representations both in parallel and joint work.

Findings suggest that the availability of multiple, interactively accessible representa-

tions might be important for information visualization applications since the availabil-

ity of multiple data representation can change decision making strategies (Kleinmutz

and Schkade, 1993). Also differing representations have an influence on validation

processes in information analysis (Saraiya et al., 2005), and more easily support peo-

ple working in parallel on information tasks (Park et al., 2000). Gutwin and Greenberg

(1998) have discussed how different representations of the workspace affect group
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work in a distributed setting. They point out that providing multiple representations

can aid the individual but can also restrict how the group can communicate about the

objects in the workspace. This extends to co-located settings, in which several repre-

sentations of a dataset can be personalized according to taste or convention, making

it harder to relate individual data items in one representation to a specific data item

in another (see Section 3.4.1 and Figure 3.1). Implementing mechanisms to highlight

individual data items across representations might aid individuals when switching be-

tween joint and parallel data exploration.

3.5.2 Presentation Issues

Presentation has been defined as “something set forth for the attention of the mind”

(Webster, 2007) and as “the way in which suitably encoded data is laid out within

available display space and time” (Spence, 2007a). From these definitions it is clear

that changing from desktop to other display configurations, as is usually the case to

support co-located collaboration, will impact the types of presentations techniques that

are possible and/or appropriate. In collaborative scenarios, information visualizations

might have to cover larger areas as group members might prefer to work in a socially

acceptable distance from each other. The display space might also have to be big

enough to display several copies of one representation if team members want to work

in parallel. These copies should be movable, resizable, and reorientable to allow group

members to position them according to their preferences. However, the size and aspect

ratio of a visualization can have an important influence on the interpretation of the

information (Heer and Agrawala, 2006). This can be both beneficial as it provides new

perspectives on the visualized information but also be problematic as pointed out in

frequent examples of ‘data lies’ (Huff, 1954).

Assuming a large enough display space and multi-touch input capabilities—if groups

are working over a shared presentation of data, presentations might have to be adapted

to allow collaborators to drill down and explore different parts of the data in parallel.

Collaborative information visualizations will likely have to support multiple simulta-

neous state changes. This poses additional problems of information context. Team

members might want to explore different parts of a dataset and place different foci if
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the dataset is large and parts of the display have to be filtered out. Information pre-

sentations might have to be changed to allow for multi-focus exploration that does not

interfere with the needs of more than one collaborator. For example, DOI Trees (Card

and Nation, 2002) or hyperbolic trees (Lamping et al., 1995) are examples of tree visu-

alizations in which only one focus on the visualization is currently possible. ArcTrees

(Neumann et al., 2005) and TreeJuxtaposer (Munzner et al., 2003), for example, allow

for multiple foci over one tree display but these were not designed to take the infor-

mation needs of multiple collaborators into account and might still occlude valuable

information.

An example for visualization presentation changes based on a collaborative circular

tabletop environment has been presented by Vernier et al. (2002) (also see Section 2.3).

The presentation of the circular node-link tree layout was modified to rotate all nodes

towards the boundary and a ‘magnet’ was implemented to rotate nodes towards just

one team member. Nodes were also changed in size; as leaf nodes were placed closer

towards team members’ personal spaces (Scott et al., 2004) they were decreased in

size and the nodes towards the center of the table were enlarged to allow for easier

shared analysis of the node contents in the group space (Scott et al., 2004). A possible

extension of this work is to think about placing and re-arranging nodes automatically

based on the placement and discovery interests of team members or based on the

individual or shared discoveries that have been made.

The presentation of visualizations might also have to take available input devices on a

shared large display into account. If fingers or pens are used as input devices, the selec-

tion might not be accurate enough to select small information items. A common task

in information visualization is to re-arrange data items (e. g., by placing points of in-

terest), to request meta-information (Shneiderman, 1996) (e. g., by selecting an item),

or to change display parameters by selecting an item. If the displayed dataset is large,

it often covers the full screen and reduces individual items to a few pixels. Previous

research has attempted to solve the issue of precise input for multi-touch screens (e. g.,

Isenberg et al. (2006b); Benko et al. (2006)) but they might not be applicable if the

whole visual display is covered with items that can possibly be selected. Alternatively,

information presentations could be changed to allow for easier re-arrangement and
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selection of items, for example, with lenses as we4 explored with the iLoupe and iPod-

Loupe (Voida et al., 2009). DTLens (Forlines and Shen, 2005), discussed in Chapter 2,

is another example of the use of lenses for co-located collaboration.

The resolution of a large display also has an influence on presentation design as it

relates to the legibility of data items. It is known that the reading of certain visual

variables is dependent on the size and resolution in which they are displayed (Ware,

2000). Information visualizations also often rely on textual labels to identify data items

which may be hard to read on low-resolution displays. The presentation size of indi-

vidual items and labels may have to be adapted to compensate for display resolution.

Both the selection of small data items and the readability of the data on the display are

issues for both parallel and joint work phases.

3.5.3 View Issues

The term ‘view’ is common in information visualization literature and view operations

(changing what one currently sees) have been defined as distinct from value operations

(changing the underlying data) (Chi and Riedl, 1998). However, this use of the term

view also incorporated changes in visual aspects of representation and presentation.

Blurring the distinction between view and presentation changes has not been problem-

atic because with a single viewer and a single display these are often concurrent. This

distinction rises in importance in co-located collaborative applications. A change of

view, for example, can be the result of a person moving physically to another location.

This would be quite rare in single person desktop setups but can be quite common in

large and/or multi-display environments. It can also be the result of view operations

such as pan, zoom, rotation, or re-location, which may be commonly performed when

team members have freedom to organize their views in the workspace.

As discussed next, view issues impact both parallel and joint work on visualizations.

In a co-located collaborative setting, of necessity, there are as many views of a given

presentation as there are people in the group. Also, since collaboration practices often

include mobility, a given person’s view will change as they move in the physical setup.

This factor has recently begun to receive attention in the CSCW community. Nacenta

4 This paper was published as (Voida et al., 2009). Thus, the use of “we” in this sentence refers to
Stephen Voida, Julie Stromer, Matthew Tobiasz, Petra Isenberg, and Sheelagh Carpendale
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et al. (2007b) have shown that righting (orienting a piece of 2D information into the

proper perspective) by means of motion tracking aids comprehension. Hancock and

Carpendale (2007) consider the same problem for horizontal displays looking for non-

intrusive interactive solutions. Since a study by Wigdor et al. (2007) has indicated

that angle of viewing affects readability of certain visual variables; this issue will be an

important one for collaborative information visualizations. This research on how view-

angle distortion affects perception in a single and multi-display environment suggests

that certain types of representations may need to be modified in order to be used on

a digital tabletop display and that information visualizations should not be compared

across multiple display orientations. However, as visual variables were tested in isola-

tion (e. g., length and direction only), further evaluations have to be conducted to see

whether participants will correct for possible distortion if the variables are presented

in conjunction with others or whether view correction (Nacenta et al., 2007b; Hancock

and Carpendale, 2007; Hancock et al., 2009) might compensate.

Visualizations that can be read from multiple angles and orientations (e. g., circular

tree layouts vs. top-down layouts) might be more appropriate for display on a horizon-

tal surface. However, it is not clear whether participants would try to read oriented

visualizations upside down and make wrong conclusions based on these readings or

whether they would simply re-orient the visualization to correct the layout.

3.5.4 Interaction Issues

Most interaction issues deal with interaction with representations, presentations and

views, thus discussing them here would overlap with points raised under these head-

ings. However, there are some more general interaction issues. These include issues

with how collaborative systems may impact interactive response rates and the fact that

several inputs are in play.

Interactive Response Rates

Information visualization often deals with extremely large and complex data sets and

can have considerable graphics requirements for complex representations. Adding

larger screens, more screens, higher pixel counts, and multiple simultaneous inputs
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will increase computational load adding more requirements to the challenge of main-

taining good interactive rates. Thus implementations of collaborative information visu-

alizations have to be carefully designed for efficiency. Individual information displays

can already be computationally intensive and require considerable pre-processing. Yet,

in collaborative systems several information visualizations might have to be displayed

and interacted with at the same time. While powerful hardware can solve the problem

to some extent, efficient data processing as well as fast rendering of the graphical rep-

resentations will be important issues to be addressed. This is particularly crucial when

parallel work styles require simultaneous changes to visualization states.

Interaction History

Collaborative information visualization systems should also consider providing access

to some form of data analysis history. While this is true for information visualizations

in general (Shneiderman, 1996), it might be of even higher importance in collaborative

settings. Chuah and Roth (2003) have suggested that capturing and visualizing infor-

mation about interactions of collaborators with objects in a workspace may enhance

collaboration by leading to a better understanding of each others’ involvement in solv-

ing a task. As group members switch between work on individual and shared views of

the data, they might lose track of the interactions of their collaborators (Gutwin and

Greenberg, 1998). The access to an exploration history can help in later discussing the

data and exploration results with collaborators or informing them about interesting

data aspects that have been found during the analysis process.

Information Access

Access to data through information visualizations also needs to be coordinated on a

global and local scope. What if, during parallel work, one group member found some-

thing in the data that he or she wishes to delete or modify? Who can change the scale,

zoom, or rotation settings for a shared view of the data? Policies might have to be put

in place to restrict certain members from making unsuspected global changes to the

data or representations that might change other group members’ view of the same data



3.6 Summary 49

(Ringel Morris et al., 2004). Similar issues pertaining to workspace awareness (indi-

vidual vs. shared views), artifact manipulation (who can make which changes), and

view representation have been discussed by Gutwin and Greenberg (1998). Should a

system allow for multiple representations or force collaborators to work over a shared

representation of the data? Should the exploration on multiple representations of the

same dataset be linked or be completely independent? Further studies are required to

arrive at answers to these questions.

Fluid Interaction

Collaborative systems should support fluid transitions between activities to improve the

coordination of activities (Scott et al., 2003). The fluidity of interactions in a shared

workspace influences how much collaborators can focus on their task rather than on the

manipulation of interface items (Scott et al., 2003). This implies that in a collaborative

information analysis scenario, parameter changes to the presentation or representation

of a dataset should require the manipulation of only few interface widgets (menus,

slider, etc.) and little or no changes of input modalities (mouse, keyboard, pen, etc.).

A study on collaborative information visualization systems has similarly reported that

groups worked more effectively with a system in which the required interactions were

easier to understand (Mark and Kobsa, 2005). This poses a challenge to information

visualization tool designers as typically a high number of parameters are required in

visualization systems to adapt to the variability in dataset complexity, size, and tasks.

The availability of mechanisms to quickly and easily pass, obtain, and share information

visualizations is invaluable for collaborative work around information visualization.

3.6 SUMMARY

This chapter provides a first collection of considerations for the design of collaborative

information visualization systems based on a review of the related literature. It shows

that one has to consider many factors including: the needs for groups when designing

the collaborative environments; the impact that social factors such as communication

and coordination, have on data analysis; the importance of thinking about group needs



50 Chapter 3 A First Set of Design Considerations for Collaborative InfoVis

when designing effective representations, presentations, and views of the data; and the

needs of group interaction support as well as information interactions that consider im-

pact on the group. I have given examples and shown how related work in several

areas can be synthesized to inform the design of co-located collaborative information

visualization systems for shared workspaces. The HCI and CSCW literature has high

applicability when considering the interaction, coordination, and communication com-

ponent in information visualizations, whereas research on information visualization

and perception has a higher applicability when designing changes in representations,

presentations, and views based on group working requirements.

I discussed scenarios in which groups need support for both individual as well as joint

work. Parallel work can be supported by providing individuals with their own views

of the data to support parallel work styles or by making shared visual representations

accessible for concurrent input. Joint work can be supported by providing additional

communication and coordination mechanisms in which analysis results, views, and

visualizations can be shared and discussed together. This literature review has also

shown that there is very little research focused on these issues in collaborative visu-

alization. While Chapter 2 has discussed some previous systems developed for this

domain, little work has emerged on how people work together with visualizations and

how they collaboratively make use of visualizations during collaborative data analysis.

Next, Chapter 4 discusses a first study on collaborative data analysis activities in a co-

located setting with a focus on studying teams’ joint data analysis processes. Table 3.1

gives a final overview of the design considerations discussed in this chapter.
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Consideration Aspects to Consider

Collaborative Environment

Display size Socially appropriate work space size per person, estab-
lishment of private, group, and storage spaces

Display configuration Accommodation of group’s current work practices, tasks,
and goals

Input Type Impact of input type on possible interactions
Resolution Input and display resolution

Supporting Social Interaction

Communication Explicit data referencing across different representa-
tional and viewing contexts, e. g., annotation; implicit
awareness cues of changes to the data across different
representational and viewing contexts

Coordination When using individual data views, location and rotation
as a coordination and communication tool, sharing of
visualizations and views, multiple synchronous interac-
tions with shared representations

Designing Information Visualizations

Representation Personal preferences, multiple representation types,
awareness support, appropriateness of representation
for work environment and social interaction

Presentation Arrangement of data items for group access, providing
copies of the same data, accommodation of input meth-
ods, compensations for display resolution

View Interpretability of data from multiple viewpoints and ori-
entations

Interaction Interactive response rates despite simultaneous interac-
tion, collaborative interaction histories, conflict reduc-
tion arising from global changes to data or view, fluid
interaction

Table 3.1: Summary of first design considerations for co-located collaborative data
analysis environments.





CHAPTER 4

COLLABORATIVE VISUAL INFORMATION

ANALYSIS PROCESSES

The review of the literature, as discussed in Chapter 3, showed that we still know too

little about how teams work with information visualizations, what kinds of analysis

processes software should support, and which analysis processes require specific sup-

port for parallel vs. joint work styles. To improve our understanding of collaborative

data analysis, we1 conducted an exploratory study of groups of individuals, pairs, and

triples engaged in information analysis tasks using paper-based visualizations. From

the results of our study, we derive information processes that capture the analysis ac-

tivities of co-located teams and individuals. Comparing this framework with existing

models of the information analysis process suggests that information visualization tools

may benefit from providing a flexible temporal flow of analysis actions and that certain

analysis activities are more commonly performed closely coupled and some more com-

monly in loosely coupled collaboration. These findings enrich our understanding of the

considerations in designing information visualization systems for co-located collabora-

tive data analysis.

1 Main portions of this chapter were published in Isenberg et al. (2008a). Thus any use of “we” in
this chapter refers to Petra Isenberg, Anthony Tang, and Sheelagh Carpendale
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4.1 MOTIVATION

Many researchers have explored the information analysis process (e. g. Card et al.

(1999); Jankun-Kelly et al. (2007); Spence (1999)) but little has emerged on the na-

ture of this process in a collaborative context (Mark and Kobsa, 2005; Park et al., 2000).

How a single doctor would analyze biomedical visualizations, for example, might differ

from how a team of doctors might analyze the same data. If teams make use of visual

information to solve problems differently than individuals, we need to understand what

these differences are so we can redesign or create new information visualization tools

to support their activity. To address this problem, we designed an exploratory study to

understand the flow and nature of this collaborative process and its relationship to data

analysis practices. To derive practical considerations for information visualization tool

design, we focused our analysis on how team members engage with the workspace and

their collaborators. Teams in the study were given paper-based visualizations to solve

tasks, allowing us to view their process independently of the confounds of a specific

information visualization system.

4.2 COLLABORATIVE VISUAL INFORMATION PROCESSING

With this study, we examine how individuals and teams solve information tasks using

simple visual representations of their data. The study results in a description of infor-

mation analysis processes and, thus, it particularly relates to previous studies that have

also resulted in descriptions or information processing frameworks. To provide context

for our study, in this section, we outline previous research that articulates an informa-

tion visualization process or the process through which a person extracts insight from a

dataset given a problem and visualization tool.

We reserve the detailed comparison of these processing frameworks until after the de-

scription of our study and our study results (see Section 4.6). This allows us to compare

our results to these existing frameworks. In particular, we will compare both the study

by Park et al. (2000) of pairs using distributed CAVE environments, and the study by

Mark and Kobsa (2005) of pairs sharing an information visualization software tool that

had been designed for single person use. These studies resulted in similar but not
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identical information processing frameworks. These two studies are most related, but

the results of the study presented here differs in that by studying non-digital informa-

tion processing, the results do not reflect the processing constraints built into existing

software but instead reflect how participants would work in non-digital contexts.

Several researchers have modeled an individual’s involvement in visual information

processing as an iterative sequence of components; however, each model is unique in

terms of its focus, and how it abstracts the process. One perspective has been concerned

specifically with the design of digital information visualization tools, focusing on how a

person manipulates view and visualization transformation parameters (e. g., (Chi and

Riedl, 1998; Jankun-Kelly et al., 2007)). Jankun-Kelly et al. (2007) propose a model

of visual exploration for analyzing one person’s interaction with a digital visualization

system. A core proposition of this work is that a fundamental operation in the visual

exploration process is the manipulation of visualization parameters. This model is

effective in capturing the temporal aspects of visual parameter manipulation; however,

it does not capture the higher-level semantics of a person’s interaction (i. e., why was a

parameter changed?). Chi and Riedl (1998) address this aspect, basing their semantic

operator framework on a person’s intention of action (i. e., view filtering vs. value

filtering), classifying and organizing operators in the analysis process. At the other end

of the spectrum, Amar and Stasko (2005) name higher-level analytic activities that a

person using a visualization system would typically perform, such as complex decision-

making, learning a domain, identifying the nature of trends, and predicting the future.

Shneiderman (1996) outlines a process (“overview then detail”), that addresses a task-

centric perspective on the analysis process. He suggests seven different operations that

information visualization tools should support to facilitate the problem solving process:

overview, zoom, filter, details-on-demand, relate, history, and extract.

A model by Russell et al. (1993), derived from studying collaborative information con-

solidation activities, describes a “Learning Loop Complex,” a cyclic process of searching

for representations and encoding information. Indirectly, these observations have led

to the Sensemaking Cycle by Card et al. (1999) and an extension presented in (Thomas

and Cook, 2005). We will later revisit the Sensemaking Cycle by Card et al. (1999) as

it shares some processes defined in our framework.

In this study, we are interested in the general processes that occur during collaborative

information analysis (independent of the confines of a computer-based information
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visualization tool), as well as the interactions with visualizations and those between

team members. The focus is on general processes that form the basis of collaborative

use of information visualization.

4.3 CHOOSING A METHODOLOGY

When developing software tools to augment work practices, at least three fundamen-

tally different approaches exist. One is to study possible improvements for support of

the process through studying the current software support or tools in use. Another is

to hypothesize about improvements to existing tools, to develop a promising tool and

study it in comparison to the existing tools. A third is to work towards an improved

understanding of the process in order to develop a better match between the natural

human process and its software support.

The study presented in this chapter is part of this third stream of research and as such

falls into the tradition of qualitative research (Creswell, 1998). The basic idea is that

through observations of participants’ interactions with physical artifacts a richer un-

derstanding of basic activities can be gained and that this understanding can be used

to inform interface design. Researchers (e. g., Scott et al. (2004); Tang (1991)) have

previously studied how people accomplish tasks in non-digital contexts in order to un-

derstand what activities digital tools should support. Their approach generally relied

on observation of participants, inductive derivation of hypotheses via iterative data col-

lection, analysis, and provisional verification (Creswell, 1998). This style of research

has worked well to uncover the basic activities of collaborative work. For instance,

Tang’s study of group design activities around shared tabletop workspaces revealed the

importance of gestures and the workspace itself in mediating and coordinating collabo-

rative work (Tang, 1991). Similarly, (Scott et al., 2004) focused on the use of tabletop

space and sharing of items on the table and showed how people established and used

different tabletop territories during collaborative work. While these authors studied

traditional, physical contexts, ultimately their goal was to understand how to design

digital tabletop tools. Both of these studies contributed to a better understanding of

collaborative work practices involving tables in general. Of particular interest is that

in these studies, the researchers chose not to use digital tools, and instead to study the
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participants using traditional artifacts, such as pens, paper, cardboard, and so forth.

The reasoning behind this choice is that participants’ physical interactions with these

familiar artifacts and tools would more closely reflect how participants understand and

think about the problem at hand. Similarly, with the study presented here, we shed

light on small team visual analytic processes by observing people working with famil-

iar physical artifacts on a traditional table in order to avoid observing the processes

supported by any given piece of visual information software.

4.4 A STUDY OF THE INFORMATION ANALYSIS PROCESS

In the exploratory study presented next, we focused on examining individuals and

small groups working on visual analysis tasks unencumbered by the confounds of any

specific digital interface. We developed a set of static charts placed on index cards to

represent the visualization tool, and provided participants with traditional tools such

as pens and paper. This setup allowed us to observe behaviours such as free arrange-

ment of data, annotation practices, and different ways of working with individual in-

formation artifacts—behaviours that we would not otherwise see given most digital

visualization tools.

A key drawback of this approach is that it is not possible for us to see how typical inter-

actions in information visualization tools (such as selection, encoding, or presentation

parameter manipulations) would be used; however, like Mark and Kobsa (2005), our

specific interest was in uncovering the general processes involved in collaborative and

individual visual analysis, and not on specific interactions with a given visualization

tool.

4.4.1 Participants

We recruited 24 paid participants from the University of Calgary population, 14 female,

10 male. The mean age of the participants was 26 years. Participants were assigned

to 4 groups each of singles, pairs, and triples. With one exception, all pairs and triples

were known to each other beforehand. For further group details refer to Figure 4.1. The

sample size for this study was informed by emerging results. After four pilot studies
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and 12 groups the experimenters were confident that further observations would result

in redundant data. 17 of the 24 participants reported to be familiar with all the charts

given to them in the study (Figure 4.1). 21 of the participants reported to do data

analysis similarly to how it was asked of them in the study at least on a yearly basis

(Figure 4.1).

Figure 4.1: Participants’ gender, chart familiarity, and data analysis frequency.

4.4.2 Apparatus

Participants worked on a large table (90 × 150 cm) and were given 15 × 10 cm cards,

each showing one data chart. The table was covered with a large paper sheet, and

several pens, pencils, rulers, erasers, scissors, and sticky notes were provided. Six

different types of charts were used. These charts showed different subsets of the data

and each data subset was shown in at least two different representations (e. g., line

chart and bar chart). Figure 4.3 gives an overview of the charts used and shows how

many participants reported themselves to be unfamiliar with a given chart; however,

data was always redundantly encoded in familiar charts. All charts can be found in

Appendix A.1.

4.4.3 Tasks

Participants worked on two task scenarios, each composed of a different data set with

its own representations. The data sets used in the study are part of the sample files

provided with the analysis software SPSS 14.0. The behaviour data set (Scenario B,
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Belch:

Belch:

Figure 4.2: Example charts given to participants in the study. Left: Scenario B, Right:
Scenario C.

behavior.sav in SPSS) included 32 charts (1 stacked area, 1 line, 15 scatter plots, 15

bar charts). The data shown in these charts was about ratings for the appropriateness

of 15 behaviours in 15 different situations (e. g., belch in church, see Figure 4.2). The

cereal data set (Scenario C, cereal.sav in SPSS) which included 30 charts (3 pie, 9 bar,

9 stacked bar, 9 line charts, see one example in Figure 4.2) was about an imagined

study of preferences for certain breakfast options. No specialized knowledge about the

data was required to solve the tasks and high task engagement was evident through-

out the observations. The presentation order of these scenarios was counter-balanced

between groups. Similar to the design used by Mark and Kobsa (2005), our scenarios

each contained an equal number of open discovery tasks, where tasks could have sev-

eral possible solutions, and focused question tasks which had only one correct answer.

For example, one scenario contained study data on ratings of appropriateness of 15

behaviours in 15 different situations. In this scenario, an example of an open discovery

task was, “choose three situations and describe behaviours most appropriate for that

situation according to the graphs,” and an example of a focused question was, “is it

more appropriate to argue or belch in a park?” An overview of all tasks and task charts

can be found in Appendix A.1.
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Figure 4.3: Unfamiliarity of participants with study charts.

Scenario Task Type

C 1) Give a short description of the participants’ characteristics. open
2) Who should each breakfast option be advertised to? open
3) Do more females prefer oatmeal than active people prefer cereal. focused
4) Do more inactive people prefer oatmeal than people over 60? Do you think
there might be a relationship between lifestyle and age in terms of preference
for oatmeal?

focused

B 1) Find pairs of behaviours that have similar ratings in at least three different
situations.

open

2) Choose three situations and describe behaviours most appropriate for that
situation.

open

3) Find two situations that have at least five behaviours with similar ratings. open
4) Is it more appropriate to argue or belch in a park? focused
5) Where was it most appropriate to laugh. focused
6) What behaviour in which situation was most appropriate and which was most
inappropriate.

focused

Table 4.1: Study questions and type for Scenario C (Cereal) and Scenario B (Be-
haviour).

4.4.4 Procedure

Participants were greeted and then seated themselves around the table. Next, a short

tutorial was provided on the types of charts, tasks, and scenarios used in the study.

Participants were told that they could use any of the tools on the table (pens, rulers,

etc.) to work with the charts, and that they could write on anything as they saw fit (e. g.,

cards, scrap paper, table, etc.). Participants were then given an example task scenario

to clarify the process. Once participants reported to have understood how to proceed,

a problem sheet for each task scenario was given to them in turn. Participants were
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instructed to work on the tasks in any way they felt comfortable. Upon completing

both task scenarios, participants filled out a questionnaire asking them about their

experiences during the study and to collect demographic information. The groups

of two and three participants naturally discussed their tasks and progress and single

participants were asked to use a “talk aloud” protocol. The questionnaire given to

participants can be found in Appendix A.1.

4.4.5 Data Collection and Analysis

For both our data collection and analysis we followed basic principles of Interaction

Analysis as described by Jordan and Henderson (1995). Our study is based on the

assumption that information analysis practices are situated within the interactions be-

tween collaborators and the artifacts of the workspace. Our goal was to collect evidence

from data that would help to ground emerging theories about the collaborative analysis

practices. During each study session two observers (one the author of this dissertation)

were always present. Both observers collected notes, and each session was video or

audio taped. The scene was videotaped from two locations: one above the table clearly

showing the information artifacts and another from the side capturing the participants

and recording voice. One group did not agree to be video-taped but allowed us to

audio-tape the session. 610 minutes of video data was collected (~ 50 minutes for

each session).

The two observers collected independent notes on the process of participants in solving

the tasks. These notes were not compared between sessions as the goal was for each

observer to establish an independent picture of groups’ working styles. Every attempt

was made to refrain from speculation as to participants intentions and instead to sup-

port observations with examples of participants’ interactions. Next, the two observers

went over the field notes and compared and categorized their observations using an

informal affinity diagramming approach. The observations were thus grouped into a

first set of codes for observed general data analysis processes used by the participants.

I implemented a video coding tool capable of synchronously playing both videos while

recording time-stamped codes and notes during the video coding. Next, I engaged in a

first video coding pass with the tool in which each participant’s activities were assigned

to one of the initial codes. When none of the codes fit any of the established codes, I
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assigned a new code and marked the video sequence for later discussion with the other

observer. The video coding tool allowed us to quickly jump back to marked sequences

to discuss the new codes in question. During these discussions after the first video

coding pass, we refined and extended the initial code set. We changed the descriptions

for each code, more rigorously described the activities involved, and refined the termi-

nology. For example, the browse process was originally termed “explore” but the term

“browse” was finally chosen as it more clearly points to the observed activities for this

process.

Last, I engaged in a final coding pass and used the video coding tool to record time-

stamps detailing temporal occurrences of the codes for each participant in the study. I

also frequently stopped the video to take screen shots of examples of group analysis

activities for each code. Some of these screen shots can be found in the remainder of

this chapter. The team that did not agree to be video-taped was not included in this

coding pass. The final code set is outlined in the following section. Lastly, I recorded

and analyzed the qualitative data from the questionnaire in order to combine the results

with the observations from the video. Where relevant the data is included in the results

section to support our observational data.

4.5 FINDINGS

This section outlines our understanding of the collaborative and individual visual anal-

ysis processes uncovered during our analysis. This discussion is followed by illustrating

how the processes themselves were not temporally organized in a consistent way across

groups. Then in the next section, we relate our findings to prior work and discuss im-

plications for the design of information visualization tools.

4.5.1 Processes in Visual Information Analysis

Our analysis revealed eight processes common to how participants completed the tasks

in the study (summarized in Table 4.2). Each process is described using real examples

drawn from the study, discussing participants’ interactions with one another and the
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Process Description Goal

Browse scan through the data get a feel for the available information
Parse reading and interpretation of the task

description
determine required variables for the task

Discuss Collab-
oration Style

discuss task division strategy determine how to solve the tasks as a
team

Establish Task
Strategy

establish how to solve a task with given
data & tools

find an efficient way to solve the problem

Clarify understand a visualization avoid mis-interpretation of the data
Select pick out visualizations relevant to a par-

ticular task
minimize the number of visualizations to
read

Operate higher-level cognitive work on specific
data view

solve task or sub-task

Validate confirm a partial or complete solution
to a task

avoid errors in completing the task

Table 4.2: The eight processes observed in our information analysis study. “Discuss
Collaboration Style” only applies to collaborative analysis scenarios.

workspace. Where average process times are reported these are an aggregation of

several instances of particular processes during both scenarios.

Browse

The browsing process comprises activities involving scanning through data to get a feel

for the available information. Browsing activities do not involve a specific search re-

lated to a task; instead, the main goal is to gain some understanding of the data set.

For example, we observed participants quickly glancing through or scanning the infor-

mation artifacts—likely to see what types of charts were available and the variables

in the charts. Five participants took the complete pile of charts and flipped through

them in their hands, while 11 others created an elaborate layout of cards on the table.

Figure 4.4 shows an example in which two participants use two very different browsing

strategies. One participant (bottom of image) lays the two overview charts out in front

of him, flipping through the remaining cards in his hand, while the other participant

creates a small-multiples overview of the cards on the table as he browses through

them one at a time. A small-multiples layout consists of charts being put in a grid-like

fashion next to each other in the workspace.

Participants in groups generally browsed in parallel working independently from one

another and with their own set of charts. Groups were more efficient than individuals
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(a) Start of a browsing session. (b) End of a browsing session.

Figure 4.4: Different browsing strategies: the participant on the right creates an
overview layout; the participant on the bottom laid out the overview charts and is
flipping through the remaining data charts in his hands.

(average browsing times were ~ 30s for groups, and ~ 60s for individuals), perhaps

indicating that, for individuals, having a completely clear sense of the data is more

important, whereas groups can rely more on others. In one case, the experimenters

observed one participant in a group of three who did not browse through the data

himself; instead, he watched as his partners laid their cards out on the table.

Parse

The parsing process captures the reading or re-reading of the task description in an at-

tempt to understand how to solve the problem. Participants read the task description

either quietly or aloud, and in teams, this choice reflected the collaboration style that

teams adopted. For instance, teams working closely together would read task descrip-

tions aloud, facilitating joint awareness of the state of the activity, and discussion of

how to interpret the question. On average, pairs and triples spent 2 min reading and

re-reading the task description; however, individuals referred to the task sheet more

frequently (10 times vs. 9 times in pairs and 7 times for triples in total).

The problem sheet was treated as a special information artifact: it often had a promi-

nent spot in a participant’s workspace and was seldom moved. Figure 4.5 shows two

examples of typical placements of the problem sheet in participants’ workspaces. Even

if the problem sheet was covered, as for two of the three participants on the left, the
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Figure 4.5: Two typical examples illustrating how the problem sheet (outlined) re-
ceived a prominent spot in participants’ workspaces. However, it was often covered by
charts that participants were currently working with.

sheet would usually not be moved but accessed by moving artifacts that covered it. The

problem sheet was also often used as the primary notepaper to record answers, rein-

terpretations of the questions, or to retain action lists (e. g., variables to look for in the

data).

While many real-world information analysis scenarios may not have a concrete problem

description sheet, an assessment of the given problem(s) and the required variables can

certainly still occur and would be considered part of this process. The problem sheet

can be seen as external textual information that is not part of the current dataset but

provides meta-information on the problem, tasks, or data.

Discuss Collaboration Style

Three of the eight teams explicitly discussed their overall task division strategy; the five

remaining teams seemed to choose their collaboration style on the fly. We observed

three main collaboration strategies that teams discussed and/or adopted:

• Complete task division. Participants divided tasks between themselves to avoid

duplicating work. Each participant worked alone with his or her information

artifacts on a separate subset of the problems. Results would be combined at the

end without much further group validation.
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• Independent, parallel work. Participants worked concurrently on the same tasks

but independently of each other. When one participant had found an answer,

solution and approach were compared and discussed. Other participants might

then validate the solution by retracing the approach with their own artifacts, or

by carefully examining a partner’s information artifacts.

• Joint work. Participants talked early about strategies on how to solve the task,

and then participants went on to work closely together (in terms of conversation

and providing assistance) using primarily their own information artifacts. When

one person found a solution, information artifacts were shared and solutions

were validated together.

While three teams explicitly discussed a collaboration style, all 8 teams changed their

collaboration strategy midway through a task scenario or between scenarios. A combi-

nation of parallel and joint work strategies was used by six teams and two others used

a combination of task division/parallel and task division/joint work. Six of the eight

teams started with a loose definition of doing the tasks “together.” Strategy discussions

were brief: ~ 1 min on average per scenario. Most of the changes in task strategy

were quite seamless, and did not require any formal re-negotiation. This is echoed in

the post-session questionnaire in which two participants reported to have chosen their

strategy “intuitively” and “by chance.” In general, teams showed a strong tendency for

parallel work: all eight groups solved at least parts of one scenario in parallel with

each team member working with his or her own charts. 14 of 20 participants in teams

reported that the main reason they divided tasks this way was for perceived efficiency.

Participants in two groups of three reported to have specifically divided the task load

by choosing a scribe to record answers.

Establish Task Strategy

In this process, participants searched for the best way to solve a specific task using the

given data and tools. The goal of establishing such a strategy was to determine the next

views or interactions required to extract variables or patterns from the data to solve

the problem efficiently. As a team activity, this discussion occurred 22 times with the

help of individual information artifacts for all groups and tasks; one participant would

present a possible approach to the other participant(s) using examples. For example,

Figure 4.6 illustrates an instance where two participants are discussing how to solve a
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Figure 4.6: Discussing a strategy on how to solve a task using the chosen chart. Infor-
mation artifacts are used as aids.

particular task using a specific chart they had chosen. The team frequently flipped be-

tween looking at a shared chart and the chart in their own hand. This explicit strategy

discussion was more common when teams worked in a joint work collaboration style.

When participants worked independently or in parallel, the determination of strategy

seemed to occur silently (perhaps in parallel to the parsing process). For instance, par-

ticipants might articulate their strategies without discussing the explicit reasoning for

it: “I am now going to look for the highest peak.” During the video analysis, we only

observed on average 1–2 minutes per scenario in which teams specifically discussed

their strategy to solve a task. At the end of this process—depending on the chosen

strategy—participants often reorganized their information artifacts in the space to cre-

ate an adequate starting position for solving the task. For example, if the strategy was

to find two data charts, then the workspace might be organized to facilitate the finding

of these two data charts (as in Figure 4.4).

Clarify

Clarification activities involve efforts to understand an information artifact. While the

study included common bar, pie, and line charts, also less commonly used stacked bar

charts and an area chart were included. The unfamiliar charts required more careful

scrutiny by participants. For individual participants, ambiguities in the data display

were resolved twice using other charts as aids. Others did not attempt a clarification

but chose alternative representations leaving out the one that was unclear. In teams,
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the need for clarification involved discussion with other participants to decipher and

understand the charts and sharing of information artifacts and, thus, led to joint work

phases. Overall clarification required less than 1 min for Scenario B and no clarification

was required for Scenario C. The clarification times for Scenario B were higher for each

group as this scenario contained the most unfamiliar stacked area chart. Only those

triples that included participants which were unfamiliar with certain charts required

longer than average (1 min, 2 min) for clarification in Scenario B.

Select

Selection activities involved finding and picking out information artifacts relevant to a

particular task. The experimenters observed several different forms of selection, often

dependent on the organization of data that was established during browsing. We char-

acterized these styles of selection by how artifacts were spatially separated from one

another:

• Selection from an overview layout. Beginning with an overview layout (e. g., small-

multiples overview from Figure 4.4), relevant cards are picked out. Selection

of cards from this layout involved either a re-arrangement of the organization

scheme so that relevant cards were placed within close proximity or marking by

either placing hands or fingers on the cards, or using pens.

• Selection from a categorization layout. Starting from a pile-based categorization of

information artifacts, piles are scanned and relevant cards are picked out. These

cards are then placed in new piles that carry a particular meaning (e. g., relevant,

irrelevant). Previously existing piles might change their meaning, location, and

structure in the process.

How participants organized these selected data cards was dependent on how they in-

tended to operate on (or use) them. The left of Figure 4.7 illustrates an instance where

two cards were relocated and placed side-by-side for comparison. Figure 4.7 shows an

example on the right where a variable was to be measured, so the card was relocated

closer in the individual person’s workspace. The spatial organization of cards relative

to piles of data could carry a particular meaning. For example, when an operation on

a data card was to be brief, a single card was drawn out, operated upon, and then

replaced. Similarly, the organization scheme might reflect the perceived importance of
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Figure 4.7: Chart organization during selection depending on their intended usage.
Left: a participant selected four cards for comparison placing them side by side in her
hand. Right: three participants selected individual charts and placed them in the center
of their workspace to measure a specific value.

a set of cards: we observed piles of information artifacts that were clearly discarded

(Figure 4.8). Temporally, we also observed different selection strategies, which could be

loosely classified as “depth-first” or “breadth-first.” A “depth-first” approach involved

selecting a single card, operating on it for a period of time, and then selecting the next

card (e. g., Figure 4.8, left). “Breadth-first” strategies selected all cards deemed rele-

vant in a single pass and then operated on them afterwards (see Figure 4.8, right). On

average, participants spent ~ 4 min selecting data, the second most common process

in the study. Selection was an activity that participants in groups performed predomi-

nantly in parallel working from their own deck of cards. On few occasions participants

in groups jointly selected information from an overview layout when trying to validate

an answer.

Operate

Operation activities involved higher-level cognitive work on a specific view of the data

with the goal of extracting information from the view to solve the task. Figure 4.9

illustrates the two most common types of operation activities: extracting a data value,

and comparing data values. To extract a data value from a card, participants often

used rulers or some other form of measuring tool (e. g., edge of a piece of paper).

To aid recall of these values, participants made annotations: sometimes on the charts

themselves, and other times on spare pieces of paper. During the course of both sce-
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Figure 4.8: Changing categorization during selection. Left: a participant placed irrele-
vant cards to her left and picks single cards to operate on from the working set. Right:
a participant picked out relevant cards, placed them close to himself, and put irrelevant
cards in a pile further away.

narios each participant on average annotated at least three information artifacts (two

during Scenario B (Behaviour), one during Scenario C (Cereal)). Comparing values on

a specific chart or comparing values across charts was also extremely frequent. Every

participant in the study compared charts on at least one occasion. The most frequent

comparison involved just two charts but the experimenters also noted 15 occasions of

participants comparing three or more charts. In the study, participants arranged the

charts for a comparison during selection: cards would be placed in close proximity to

facilitate easier reading of either individual values or patterns (Figure 4.8). Partici-

pants were quite creative in their use of tools to aid comparison: marking individual

values, bending or cutting individual charts (to facilitate placing values physically side-

by-side), or on seven occasions we noted overlaying of charts atop one another in an

attempt to see through the top chart. The operation process typically generated a set of

results which were synthesized with previous results and/or written down. Participants

in groups predominantly operated on the data in parallel and just reported results to

the team if other tasks depended on these results (e. g., when work on the same task

had been split up). Operation was the most time-consuming activity in our study. On

average participants spent almost half of their time (11 min) on operations per scenario.

64% of operations followed a selection process.
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Figure 4.9: Two participants showing two different types of operations on the infor-
mation. The participant on the right is comparing two cards using a ruler while the
participant on the top is measuring a particular value.

Validate

Validation activities involved confirming a partial or complete solution to a task. Be-

yond confirming the correctness of a solution, teams also ensured the correctness of

the process or approach that was taken. In teams, the validation process often in-

cluded discussion coupled with sharing of information artifacts: on 47 occasions par-

ticipants validated others’ solutions by looking carefully at the solution using shared

representations, while at other times they searched for the solution by using their own

information artifacts (i. e., the process or approach was shared instead of the artifacts

themselves). When working more independently, the validation process only involved

the presentation of a solution by the group member who had it. In groups where col-

laborators worked more closely, the collaborators would often ensure that the other

participants had understood the process with which a solution was found. For indi-

vidual participants, the validation process involved looking at other data cards (i. e.,

different representations) for the same answer. Of interest is that individuals appear to

be concerned about the “correctness” of their solution or approach based on other infor-

mation artifacts, while teams also rely on a collective validation from the social group.

On average groups of three spent the longest time validating their answers (~ 3 min),

pairs spent ~ 1–2 min validating, and individuals spent less than one minute validating

their answers.
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4.5.2 Temporal “Sequence” of Processes

To understand how the processes related to one another in terms of a temporal rela-

tionship, the experimenters analyzed the video data from the study, coding the time

interval of each individual’s activities using these process labels. Looking at the time

intervals revealed three aspects of participants’ activity: first, while certain processes

frequently occurred before others (e. g., select most frequently appeared before operate),

no common overall pattern appeared; second, individuals varied in how they approached

each task, and finally, teams also varied drastically in how they spent their time. A few

example charts are shown next. All charts for singles, pairs, and triples exhibit this

same extreme variability of approach and can be found in Appendix A.1.4.

Figure 4.10 shows the coded temporal sequence of analytic processes during Scenario B

for three pairs. Notice how the sequence of processes was quite different for each pair,

even though participants worked on the same tasks using the same tools, representa-

tions, and views of the data. Even within teams participants did not show the same

temporal occurrences of processes. On average, participants in pairs were concurrently

working in the same process for ~ 70% of the time. For Scenario B (Figure 4.10), P2

has a 65% co-occurrence of the same processes, P3 80%, and P4 69%. This reflects

the collaboration strategies participants had chosen. P3 had switched from a complete

task division to joint work in this scenario while P2 and P4 were working mostly in

parallel. Participants in groups of three only showed a 40% co-occurrence of processes

on average. In both charts in Figure 4.10, Tasks 1–3 were open discovery tasks and

Tasks 4–6 were focused question tasks. The experimenters noticed that both individ-

uals and teams solved focused question problems quicker than open discovery tasks.

In contrast to individuals, teams seemed to have a better understanding of the tasks

(established during the task strategy process) and solved them (both focused and open

discovery tasks) more correctly. This result echoes findings by Mark and Kobsa (2005)

that suggest that groups perform more accurately, albeit slower. Of course, teams also

exhibit establishing a task strategy more so than individuals, again in order to establish

common ground (Clark, 1996), or to ensure a correct or agreed-upon approach.

Figure 4.11 shows a detail view of a specific task, charting individual participants and

three of the participant pairs. Notice that even for a single task occurring over a roughly
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Figure 4.10: Temporal sequence of processes for three pairs during one complete sce-
nario. Time is indicated as hours:minutes.

five minute sequence, how the participants engaged in the task, and the temporal dis-

tribution of process time varied.

4.6 DISCUSSION

To this point, we introduced a set of processes that occur within the context of collab-

orative and individual visual information analysis. These processes that are apparent

from the study provide an understanding of how teams and individuals use informa-

tion artifacts in the physical, non-digital workspace to solve visual information analysis

tasks and of how team members engage with each other during this process. In this sec-
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Figure 4.11: Temporal sequence of processes for one open discovery task. The top row
shows timelines for individual participants (S1–S4). The bottom row holds timelines
for participants in groups of two (P2–P4).

tion, we discuss how the processes we described in the previous section relate to other

information analysis models. This discussion reveals that while some processes relate

closely to existing models, the temporal analysis from this study suggests that with

appropriate tools, both the collaborative and individual information analysis processes

may benefit from temporal flexibility.

4.6.1 Comparing Models

Comparison with the Sensemaking Cycle

Card et al. (1999) provide a high-level model of human activity called the “Knowl-

edge Crystallization” or “Sense-Making Cycle” where the goal is to gain insights from

data relative to some task. This model, as seen in Figure 4.12, includes five main

components: foraging for data, searching for a schema (or representational framework),

instantiating a schema, problem solving, and authoring, deciding or acting. It builds on

work by Russell et al. (1993) which involved observations of collaborative work, and

an extension can be found in (Thomas and Cook, 2005).
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forage
for data

task

author,
decide, act

problem-
solve

search for
schema

instantiate
schema

Figure 4.12: Sensemaking model after (Card et al., 1999, pp. 10).

The Sensemaking Cycle has several components related to the processes found in this

study. It outlines a process called “foraging for data” that includes our browse process.

Spence (1999) specifically explores the “foraging for data” component in terms of vi-

sual navigation. In particular, he relates visual navigation to cognitive activities (such

as internal model formation and information interpretation), thereby arguing that how

people can navigate, explore, and visualize a data space will shape how people think

about the data. Spence (2007a) distinguishes three different browsing activities: ex-

ploratory browsing where the goal is to accumulate an internal model of part of the

viewable scene; opportunistic browsing to see what is there rather than to model what

is seen; and involuntary browsing which is undirected or unconscious. The experi-

menters primarily observed exploratory browsing, and saw that, as part of this process,

participants established a layout of cards, or put cards in observable categories (e. g.,

by variables or graph types). It seemed that those participants who created a specific

layout of cards in their work area created a type of overview by imposing an organiza-

tion (even if a loose one) on the information artifacts. Thus, a physical manifestation

of the creation of an “internal model of the data” was observed in this study. Further-

more, these physical layouts (a consequence of the browsing phase) clearly relate to

Shneiderman’s “overview” task (Shneiderman, 1996).

“Search for schema” seems to involve activities that here were characterized as being

a part of parsing, specifically the identification of attributes on which to operate later.
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The activity of identifying attributes to look for in the data described in this model

is augmented in our parse component by additional activities of discussion and note

taking. “Search for a schema” and “instantiate schema” involve activities that help

in the search for the best way to solve the given problem with the provided visual-

ization tool and therefore relate to the Establish Task Strategy process, albeit being

more tool-centered than our definition. Clarification is not an explicit component in

the Sensemaking Model but the need for clarification would typically arise during the

searching for and instantiating a schema components. The Selection process from this

study is most closely related to the “foraging for data” component in the Sensemaking

Model but can extend into the “searching for and instantiating a schema” components

when participants have ended their browsing activities and are ready to select specific

information important to solving the task. This may include activities that are part of

an Operation process: problem-solving, including the three levels of reading by Bertin

(1983): read fact, read compare, read pattern. Validation is not directly represented

in Card et al.’s model; perhaps, as the experimenters have also observed, because val-

idation seemed to be often omitted or quite brief for individual participants and the

Sensemaking model focuses on individuals.

The Sensemaking Cycle is the most highly coupled and interactive of the models we

compare our found processes to. It makes a strong temporal (cyclical) suggestion but

does allow for loops within this cycle over defined forward and backward connections

between components. In general, the Sensemaking Cycle does not include the same

processes but shares similar activities and predicts some of the findings from this study

in terms of temporal flexibility. An adaptation of the Sensemaking Cycle is presented

in (Thomas and Cook, 2005) for some types of analysis work. This extension includes

two main components: A Sensemaking Loop in which a mental model of the data is

iteratively developed and a Data Foraging Loop in which information is searched, read,

filtered, and extracted. This extended model tries to cover most aspects of intelligent

analysis work and the processes from our study mostly relate to those parts within the

Sensemaking Loop as discussed above.
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Parse
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repeat for additional variables

Figure 4.13: Collaborative information visualization model after Mark and Kobsa
(2005).

Collaborative Analysis Models

In studying pairs using distributed CAVE environments, Park et al. (2000) articulate

a five-stage pattern of behaviour: problem interpretation, agreement on vis tool to use,

search for a trend, discovery reporting, and negotiation of discoveries. Mark and Kobsa

(2005) also provide a five-stage collaborative information visualization model: parse

question, map 1 variable to program, finding correct visualization, validating the visual-

ization, and validation of the entire answer. A loop is included for additional variables

from stages four back to stage two. The temporal sequence of stages in this model was

derived from a study of pairs solving both free data discovery and focused question

tasks in both distributed and co-located settings. These two models share some similar-

ities, but are clearly not identical. A possible explanation for the disparity is that Mark

and Kobsa’s model focuses on a context where the pair negotiates exploration through

a shared tool (i. e., they could not work in a decoupled fashion) whereas Park et al.’s

model allows for more loosely coupled work.

Both models share some similarity with the processes discovered in this study. The

parsing process relates closely to Mark and Kobsa’s “parse question” and Park et al.’s

“problem interpretation” stages. In our study, additional activities were found that

might not have been part of the specific environment under study in these other two

models: note taking and frequent discussion about how to interpret a certain task. The

Discuss Collaboration Style process is not explicitly covered in either model. However,

similar to Park et al.’s study the experimenters observed a strong tendency in all group

conditions for participants to do at least part of the work using their own views and

information artifacts.

According to Mark and Kobsa’s model, “map 1 variable to program” is closely related

to the Establish Task Strategy process in that it would also involve a collaborative agree-
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ment on the most appropriate visualizations, parameters, or views to solve the problem,

like Park et al.’s “agreement on visualization tools to use.”

In contexts where new visualizations are introduced, or individuals are brought in

without prior training on particular visualizations, the need for clarification would be

common. Specifically, beyond providing viewers with aid in developing an understand-

ing of a particular visualization, we would expect individuals to ask for collaborators’

interpretations of that visualization or interaction technique or to put their own views

and interpretations up for discussion. Considering clarification as a process of analysis

is important for designing and evaluating visualization tools but it is not a specific part

of the two previous collaborative analysis models.

The articulation of the selection process is related to parts of the activities covered by

Mark and Kobsa’s “find correct visualization” stage and Park et al.’s “search for trend.”

The description of selection, however, more broadly captures the notion of picking out

important information beyond operations in a specific visualization system.

“Independent search for a trend including some adjustments to viewing parameters”

and “report discovery” include operations as defined in our model. Operation is not

an individual stage in Mark and Kobsa’s model but is integrated in the “find correct

visualization” stage. In groups, the validation stage was much more visible and it is also

included in these two models as the last stage of information analysis. Mark and Kobsa

noticed differences in validation between the free discovery and focused question tasks;

a result that was echoed in our study. During more open-ended questions, validation

was usually longer and involved more discussion than for focused tasks.

In general, both these models share some of the processes discovered in our study but

are quite different in their suggestion of a fixed temporal order.

4.6.2 Temporality and Process-Free Tools

Many of the existing models suggest a typical temporal order of components; however,

our analysis of the temporal occurrence of the analysis processes suggests that this typ-

ical temporal ordering was not evident. This finding of a lack of a common temporal

ordering reflects the design of this study; in particular, the stipulation that participants

would use a paper-based “information visualization” tool along with traditional tools
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such as pens, paper and notepaper. Traditional tools have no specific temporal flow in

terms of which tools should be used first or for what purpose. Similar observations have

been made by Heiser et al. (2004) in a study of non-digital co-located and distributed

sketching activities. The flexibility afforded by traditional tools allowed individuals to

approach tasks differently. As a consequence, they also allowed groups to transition

between multiple stages of independent and closely coupled work rather than regi-

menting particular work processes. The found processes map to related models, yet

our analysis suggests that the temporal ordering of these components is by no means

universal. In many digital information visualization systems, the flow of interaction is

regimented by structure; in contrast, the use of traditional tools in our study allowed

participants to freely choose how to approach and solve problems. The study results

also show that in groups certain processes often involved more closely coupled work,

in particular: Discuss Collaboration Style and Establish Task Strategy, Clarify, and Vali-

date were often done in close collaboration with shared artifacts while the remaining

processes more often involved group participants working more individually with their

own artifacts and without much verbal exchange. As close work was more common

in some styles than in other styles, this finding leads to new design considerations for

co-located collaborative information visualization tools.

4.7 IMPLICATIONS FOR DESIGN

Here the implications for the design of co-located collaborative information visualiza-

tion systems are discussed based on the findings of this study.

4.7.1 Support Changing Work Strategies

In group settings, our participants dynamically switched between closely coupled and

more independent work. The Browse, Parse, Operate, and Select processes were most

often done on individual views of the data in a more loosely coupled fashion. Discuss

Collaboration Style and Establish Task Strategy, Clarify, and Validate often happened

in closer cooperation with the other partner(s) and often included shared views of

the data. To support these changing work strategies information visualization tools
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for co-located work need to be designed to support individual and shared views of and

interactions with the data. Each collaborator should be able to perform individual op-

erations on these views unaffected by his or her team members’ actions. However, the

tool should also help to share these individual views and, thus, provide awareness of

one team member’s actions to the other collaborators. To support individual views of

the data, interaction with the underlying data structures (deletion of nodes in a tree,

change of query parameters, etc.) should be designed so as to not influence others’

views of the same data. However, to support shared views of the data, these previous

operations should be transferable to group views, for example, to combine highlights,

annotations, or other parts of an interaction history. Information visualizations could

also be adapted to specifically support joint validation, and clarification. For example,

highlights of related information across individual team members’ data arrangements

could support joint validation. For example, by seeing that one team member has

moved a piece of information to an “irrelevant” data pile could trigger discussions for

validation.

4.7.2 Support Flexible Temporal Sequence of Work Processes

Individuals by themselves as well as those in teams have unique information anal-

ysis practices based on their prior experiences, successes, and failures. These well-

established work practices should be supported by digital systems. The study showed

that all participants worked differently in terms of the order and length of the indi-

vidual work processes they engaged in, suggesting the need for digital systems to be

relatively unrestricting. The temporality of work processes suggested by previous mod-

els of the analytic process could imply that common information visualization tools

require a specific process-flow. This study, however, suggests that analysts using digi-

tal systems may benefit if a flexible order of operations can be performed. Co-located

collaborative systems, in which more than one person may work and interact at the

same time, should allow team members to be engaged in different types of processes

at the same time and also allow them to work together adopting the same processes.

For example, one person should be able to select data from or browse a database while

another already works on previously selected information.
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One very important factor in the support of flexible temporal work processes in our

study was participants’ abilities to adapt the workspace to their current needs. Informa-

tion artifacts were re-arranged on the table by all of our participants. We observed that

participants had quite distinct individual workspaces on the table in which they laid

out their cards. These workspaces were quite flexible and would change depending on

tasks as well as, in group settings, on team members’ spatial needs. This observation

is echoed by the studies of collaborative behaviour reported by Scott et al. (2004) that

call for co-located collaborative systems to provide appropriate functionality in these per-

sonal workspaces (territories). We refer to their paper for further guidelines of how to

support personal territories for co-located collaborative work.

Participants also seemed to frequently impose categorizations on data items by orga-

nizing them spatially in the workspace. During browsing, overview layouts were often

created in which the cards were spread across the whole workspace. Mainly during

selection and at the end of an operation process, information artifacts were organized

in piles in the workspace. These piles seemed to have inherent categories and varied

greatly in size, lifespan, and semantics. Allowing people to create a spatial organiza-

tion of the information artifacts in the workspace should be considered in the design

of information visualization systems. These spatial organizations can help to support

mental models of the available information. Systems like CoMotion (MayaViz, 2007)

are already taking a step in this direction but the typical information visualization sys-

tem still relies on a fixed set of windows and controls that can rarely be changed, piled,

or relocated.

4.8 CHAPTER SUMMARY

During the analysis of relevant literature in Chapter 3, we noted a lack of dedicated

studies on how team members engage with each other and with visualization in the

workspace during collaborative data analysis. The purpose of the study presented in

this chapter is to help further our understanding of collaborative work with visualiza-

tion and data analysis tasks and to help establish further design considerations that

could be translated to design decisions in the case studies presented in the following

chapters.
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With the study presented in this chapter, we derived processes involved in collaborative

and individual activities around information visualizations in a non-digital setting. The

eight identified processes are: Browse, Parse, Discuss Collaboration Style, Establish Task

Strategy, Clarify, Select, Operate, and Validate.

For participants in groups, we noted that processes: Clarify, Discuss Collaboration Style,

Establish Task Strategy, and Validate were predominantly performed in joint (closely

coupled) work phases with frequent discussion and sharing of artifacts, while activi-

ties involving the Browse, Select, Operate, and Parse processes were predominantly

performed in individual, parallel work. Similar to the study presented by Tang et al.

(2006), we observed participants in groups fluidly transition between phases of joint

and parallel work. Our finding that specific analysis processes may more commonly

be performed in discussion and with joint information artifacts has implication on the

design of collaborative information visualization systems.

Furthermore, we have shown how these eight processes relate to other models of in-

formation analysis, and provided insights on differences and commonalities between

them. Yet, while others have posited a general temporal flow of information analysis,

our results suggest this temporal flow may simply reflect an assumption in the design

of existing information visualization tools. Thus, we argue that designers should al-

low for individuals’ unique approaches toward analysis, and support a more flexible

temporal flow of activity. This flexible temporal flow of activity is particularly impor-

tant when group members wish to switch between different phases of joint and more

parallel work. During parallel work, in particular, group members may follow their

own approaches to analysis and want to be able to interact with, explore, and ana-

lyze the data without disturbing others. This free switching of work style needs to be

supported and a flexible temporal flow of activities—both in the temporal sequence

and co-occurrence of work styles in groups—should be integrated in collaborative data

analysis tools. The digital systems presented in Chapter 5–7 were designed to provide

this type of flexibility.



CHAPTER 5

COTREE—A SYSTEM FOR COLLABORATIVE

TREE COMPARISON

In Chapter 3, I discussed a set of design considerations for co-located collaborative

information visualization. In Chapter 4, these considerations were extended to include

recommendations on analysis processes that team members adopted and the temporal

flexibility of their analysis activities. The purpose of this and the following chapters

is to show—based on practical examples—how some of these considerations can be

translated into a design and to show which design challenges arise in practice.

When designing a collaborative visualization system to support both parallel and joint

work activities, several different approaches exist. First, one can design a completely

new system that fundamentally supports parallel work and build in mechanisms so that

results from parallel work can also be shared with the group in more closely coupled col-

laboration. Second, one can take a typical desktop based system, which fundamentally

only supports joint work through one input pointer and a large shared visualization,

and add on capabilities for teams to work more in parallel. Third, one can design a

system that fundamentally supports parallel work but includes system features that are

meant to encourage and support more closely coupled work. The following three chap-

ters each introduce a system developed under the focus of these respective approaches.
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In this chapter I discuss a prototype system, CoTree, which we1 designed to funda-

mentally support parallel work with visualizations. The following sections introduce

the system and our design decisions related to building the collaborative environment,

supporting social interaction, and designing information visualizations. The chapter

ends with an example of how the flexible workspace organization principle underlying

the system was used to facilitate the tree comparison task that CoTree supports. The

experiences from designing this first prototype are summarized in the final section.

5.1 INTRODUCTION

In this first case study, I designed a new collaborative analysis system with the goal to

fundamentally enable parallel work with data. This is achieved by providing each col-

laborator their own views and interaction possibilities with the data. Each view of the

system is completely decoupled from all others, allowing interactions or annotations

that do not affect other views of the same data. However, views can be individually

placed, rotated, resized, and, thus, shared in order to facilitate more closely coupled

work. The system departs from the design of typical desktop-based information visu-

alization systems and provides a new layout strategy for the visualization workspace,

as well as a new interaction design based on touch input. The system supports hierar-

chical data comparison tasks for collaborative work with dual-touch input, shared and

individual views on the hierarchical data visualization, flexible use of representations,

and flexible workspace organization to facilitate group work around visualizations.

CoTree supports work with hierarchical data, specifically with two different types of

tree representations: a space-filling radial tree layout and a dendrogram. The radial

tree layout similar as the one presented by Stasko and Zhang (2000) was implemented

with a minor adjustment that places labels in a circular fashion inside the nodes (see

Figure 5.1, left). This type of labelling was chosen to facilitate orientation-independent

reading from different positions around the tabletop display. Since tree comparison is a

task commonly performed on phylogenetic trees (Munzner et al., 2003), a dendrogram

1 Portions of this chapter were previously published in (Isenberg and Carpendale, 2007). Reprinted,
with permission, from IEEE Transactions on Visualization and Computer Graphics, Interactive Tree
Comparison for Co-located Collaborative Information Visualization, Petra Isenberg and Sheelagh
Carpendale, © 2007 IEEE. Thus, any use of “we” in this chapter refers to Petra Isenberg and Shee-
lagh Carpendale.
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Figure 5.1: The two representations used in CoTree. Left: a radial tree layout with
radial labelling. Right: a dendrogram with additional node colouring to reveal level
information.

tree layout (see Figure 5.1, right), the most common representation for this type of

hierarchical data, was also implemented. In the dendrogram layout, all leaf nodes are

extended to the bottom of the graph. To additionally reveal their place in the hierarchy,

nodes are coloured according to their level. CoTree can easily be extended to support

other types of representations.

5.2 THE COLLABORATIVE ENVIRONMENT

CoTree was designed to run on a large digital tabletop display. The tabletop was cho-

sen as the joint working environment as it was shown to have a positive impact on

collaboration in joint problem solving tasks (Rogers and Lindley, 2004). The digital

table we used was built using a touch-sensitive DViT board from SMART Technologies

with two concurrent and independent inputs (see Figure 5.2). The tabletop setup has

2,800 × 2,100 pixels (~ 5.9 mega pixels) provided by four rear-mounted projectors

(2 × 2). This setup offers an adequate size, configuration, input, and resolution for

small groups of two individuals to work together on data analysis tasks. However, only

two simultaneous touches are currently supported by the technology and inputs are not

identifiable. The implementation is based on a general framework for tabletop inter-

faces that provides a method of spatially representing properties of the interface using a
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Figure 5.2: The hardware setup for CoTree, the collaborative information visualization
application. Two simultaneous pen or finger inputs are possible.

buffer approach (Isenberg et al., 2006a). This framework and the buffer approach help

to maintain interactive response on high-resolution tabletop displays. The framework

was used, for example, to implement picking and interaction regions for interaction

widgets. The framework also provides access to other tabletop interaction metaphors

and widgets such as RNT (Kruger et al., 2004), tossing, and Storage Territories (Scott

et al., 2005). To facilitate not only an efficient management of memory resources but

also to allow people to relate one visual representation of a dataset to a different one

of the same data, only one copy of this underlying dataset is maintained. Each view of

the data can be customized as discussed next. Appendix A.2 has some code examples

discussing how trees were drawn and which methods were used to ensure efficient

drawing of multiple views of the same dataset.

5.3 SUPPORTING SOCIAL INTERACTION AROUND THE DATA

In Chapter 3, I described how the layout of visualizations in the workspace can aid

communication and coordination while, in Chapter 4, I discussed the importance of
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Figure 5.3: A single visualization plane showing a radial tree layout can be seen on the
left. The right image shows three visualization planes oriented on the tabletop display.

free workspace organization for the support of temporal flexibility of work styles and

analysis processes. Therefore, the possibility for individual team members to impose a

spatial layout was incorporated in CoTree.

Any information visualization and all control widgets in CoTree can be freely re-oriented

and repositioned. Each information visualization is drawn on its own plane with appro-

priate controls attached to the side. The left of Figure 5.3 shows a single visualization

plane showing a radial tree layout and its attached menu buttons. The menu offers

common view parameter changes: scaling (zoom), integrated rotation and translation

(Kruger et al., 2004), translation only, and annotation. Thus, the plane and attached

visualization can be freely moved around the tabletop display. The right of Figure 5.3

shows an arrangement of three visualization planes on the tabletop display. The place-

ment of these menus is further discussed in Section 5.4.

By supporting free rotation, translation, and scale, team members working with CoTree

can create their own organization of items by putting them in piles, creating a preferred

layout (e. g., small multiples or piles as seen during the study presented in Chapter 4).

By allowing visualizations to be freely repositioned, sharing of visualizations is possible,

as the windows can be easily passed to the other collaborators. Representations can

also to be passed by tossing them across the table, similar to the implementation for

pictures by Scott et al. (2005).
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Figure 5.4: A visualization plane is being dropped on a storage container (left) and
automatically resized and placed (right).

The possibility for organizing representations of data is further supported by providing

storage containers that hold visualization planes. In these containers, visualizations

can be grouped together, resized, and moved as a unit similar to the implementation by

Scott et al. (2005). Figure 5.4 shows an example of a visualization plane being placed

in a storage container. First, the plane is dropped on the container (left), and then

automatically resized and placed in the storage container (right). Items in the storage

container can be placed casually, neatly organized, or piled, and can then be moved as

a unit. These containers can provide a means for collaborators to store intermediate

exploration results for later reference or comparison.

To support communication about the data, CoTree includes annotation directly on the

provided visualizations and separately on sticky notes. Interactive sticky notes for low-

resolution input (Isenberg et al., 2006b) can be used to take general notes during the

exploration process to, for example, write down intermediate results or variables to

look for. Using these annotations, collaborators can become explicitly aware of each

others’ exploration processes even if the individual work takes place in separate areas

of the workspace. Figure 5.5 shows how sticky notes and integrated annotations can

be used to mark interesting information in a tree layout.
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Figure 5.5: Annotation of visualizations. Left: Annotation using interactive sticky notes
(Isenberg et al., 2006b). Right: Annotation integrated directly on the information
visualization.

5.4 DESIGNING THE INFORMATION VISUALIZATIONS

One of the main challenges encountered during the design of CoTree, was the large

number of parameters and interaction possibilities for each view of the data. Since

CoTree was designed to support parallel work by providing visualizations on individual

view planes, the placement of menus was not as straightforward. On tabletop displays,

it is often inappropriate to use standard buttons, taskbars, or menu bars (Scott et al.,

2003) since they do not allow for fluid interaction and are not concurrently accessible

by several team members. During parallel work in a group setting, for example, several

visualizations might have a focus at the same time or a visualization might be interacted

upon by more than one person at a time. Furthermore, research on a system for collec-

tive co-located annotation of digital photos (Ringel Morris et al., 2006) revealed that

team members strongly preferred a replicated set of controls over a centralized shared

set of controls because the center of the table was needed for other tasks and because

replicated controls avoided accidental touching by other teammates. One possibility

to address this problem would, thus, be to redesign menus and embed them on each

view plane. For example, for pen-based interfaces pop-up menus (Hancock and Booth,

2004), flow menus (Guimbretiére and Winograd, 2000), or crossing-based techniques

(Apitz and Guimbretière, 2004) have been suggested. Due to the technical limit of two

unidentifiable inputs, we chose not to implement specific gestures but instead chose to

provide basic functionality local to each data view. However, these interactions local to
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the specific view planes only partially support temporal flexibility of interaction with

the data (Chapter 4). When one plane is shared by two team members, interaction still

has to be negotiated through a shared menu bar as a view cannot be simultaneously

resized and moved, or moved and annotated.

As a design experiment, we only placed common view operations (move, rotate, resize,

annotate) on each view plane and chose to provide additional means for parameter

changes external to each view. We tried an approach similar to the one by Ringel Morris

et al. (2006). We designed parameter menus as separate items in the visualization

workspace in order to avoid having to build more complicated menus attached to each

visualization plane. Parameters of a specific view can be changed through a drag and

drop operation. For example, a visualization can be dropped on ColourChanger widgets

in order to initiate a change of its colour scale (see Figure 5.6).

While initial response during informal demonstration sessions has been positive, we

acknowledge that further careful studies are required to evaluate the varying effects of

this design choice on group work. One obvious disadvantage of this approach is that vi-

sualization planes have to be moved in order to change visualization parameters. Such

movement can destroy a meaningful layout of the planes that may have been created in

the workspace, e. g., to facilitate cross-comparison. Alternatively, these widgets could

also be dropped on the visualization plane in order to initiate a parameter change. This

alternative would avoid having to reposition visualization planes if a careful layout has

been created by the group. However, experimenting and studying this approach in

comparison with other input techniques like flow menus (Guimbretiére and Winograd,

2000) would be worthwhile, in order to assess the benefits and drawbacks for group

work. The system discussed in Chapter 6, for example made a number of operations

available through gestures.

In order to create multiple representations of the same dataset, we designed floating

labels for each dataset in the workspace, as can be seen at the left of Figure 5.7. These

dataset labels can be freely repositioned and, thus, passed to other collaborators to

facilitate shared access to this resource. A new visualization plane with a default visu-

alization, for example, is created by touching the label (see Figure 5.7, right).

To support changing decision-making strategies and personal tastes and conventions,

CoTree provides individual access to different types of representations. If an individ-
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Figure 5.6: A visualization plane is dropped on a ColourChanger widget that changes
the colour scale with which the tree is displayed.

Figure 5.7: Creation of additional representations using dataset labels. Left: an exam-
ple of a floating dataset label on the tabletop display. Right: A team member created a
new visualization by touching the dataset label.

ual group member wishes to visualize the data using a different representation of the

data, e. g., a containment tree layout instead of a node-link diagram, the specific rep-

resentation can be changed with a drag-and-drop operation without interfering with

other group members’ operations. Figure 5.8 shows how a representation change is

performed. In the left image, the visualization plane is dragged onto the Representa-

tionChanger widget. As soon as the finger attached to the visualization plane is lifted

off the widget, the representation changes to the desired one as can be seen at the right

of Figure 5.8.
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Figure 5.8: Switching a representation type with a drag-and-drop operation.

CoTree currently only includes annotation and note taking capabilities to capture explo-

ration history. Further capabilities will have to be designed for future versions of this

or a similar system. The tool presented in Chapter 7, for example, includes persistent

information embedded in the information items.

As few evaluations (e. g. Yost and North (2005); Wigdor et al. (2007); Hancock et al.

(2009)) have discussed the effects of perspective distortion and orientation on the

readability of information visualizations, we did not attempt to correct for possible

negative effects.

5.5 SUPPORT FOR CHANGING WORKSTYLES

Free workspace organization was implemented to be able to support different work

styles. When team members transition between more independent work and closer,

joint work on information visualizations they can adapt the view parameters of each

visual representation to fit the current collaborative needs. Figure 5.9 gives an example

in which two collaborators are working individually at first, looking at visualizations in

their own area of the workspace (Figure 5.9, left) and then switch to a more closely cou-

pled work style by investigating one visualization together in more detail (Figure 5.9,

right). Note that the scaling mechanism has been applied to create a larger visualiza-

tion to accommodate the concurrent interaction and viewing of both partners and that

the plane has been rotated towards both team members. This type of rotation has been

previously identified as a strong communicative gesture (Kruger et al., 2004).
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Figure 5.9: Visualization planes can be freely arranged in our system. On the left two
collaborators are looking at a few representations individually. On the right they are
investigating one visualization together.

Any number of windows can be created, moved, and interacted with in the workspace,

limited only by the complexity of the graphics and the capabilities of the graphics

hardware. By allowing collaborators to each access a copy of a representation, CoTree

supports parallel work on the same data. As discussed in Chapter 4, this flexibility

in workspace organization as well as the options to personalize representation and

presentation of the data can support unique analysis approaches. In particular, by

moving representations onto individual view planes team members can select, browse,

and operate on the data without disturbing others. However, the system does not

contain specific support for team members to specifically coordinate their activities

and switch from more parallel to joint work. For example, team members can certainly

verbally discuss their collaboration styles, establish task strategies, and together clarify

and verify their data (processes discussed in Chapter 4 as being done in more close

collaboration). However, there is currently no support built in to support this discussion

in close connection to the data. For example, team members may first work in parallel

following their own exploration paths in the data. Then, one team member may find

a puzzling piece of information in the data and would like to discuss its meaning with

another team member. The other team member then has to first either locate this data

item on their visualization planes or leave their current work context and jointly view

the questioner’s visualization. It may be beneficial to further provide assistance to help

this switching of work contexts. How this could be done and to what extent this may

be necessary is further explored in two other systems presented in Chapter 6 and 7.
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5.6 COLLABORATIVE TREE COMPARISON

The development of CoTree was inspired by talking to some biologists at the University

of Calgary about their collaborative analysis needs. During discussions with the biol-

ogists, they voiced that the comparison of hierarchical datasets would be a beneficial

task for them that would also benefit from collaborative analysis. This section shows

how CoTree functions as a collaborative data analysis system by stepping through a

task of collaborative tree comparison.

5.6.1 Data and Task

As example data for our comparison tasks, we used the InfoVis 2003 phylogenetic data

and tasks (http://www.cs.umd.edu/hcil/iv03contest/). This dataset contains

information on the evolution of two proteins (Protein ABC and Protein IM). It has been

suggested that both proteins co-evolve and that such a co-evolution can be detected

by comparing the phylogenies of both proteins. The high-level task was to find out

whether such a co-evolution was visible. Lower-level comparison tasks included finding

where structural changes occurred in the tree. We chose to use the two main files for

the ABC and IM proteins and the additional four trees that were provided. Proteins

were not paired between the two trees.

5.6.2 Tree Comparison Algorithm and Visualization

We used the similarity measure from the TreeJuxtaposer system (Munzner et al., 2003)

in CoTree. The similarity measure is based on comparing the sets of labels of nodes

in the subtree under each node. The best corresponding node(s) and nodes with no

similarity are highlighted. Figure 5.10 shows a comparison of two trees containing dif-

ferent versions of a carnivore hierarchy. The node “dog” has been interactively selected

in the left tree. The best corresponding node “dog” in the right tree is highlighted in

yellow, whereas nodes with no similarity are highlighted in red. Nodes in blue are not

highlighted in the right tree as they contain the node “dog” (yellow) in their subtree

and are therefore “somewhat similar.”

http://www.cs.umd.edu/hcil/iv03contest/
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Figure 5.10: Tree comparison of two different versions of a carnivore data set. Left:
The node “dog” has been selected for comparison. Right: The node “dog” is highlighted
in yellow as the best corresponding node. Nodes in red have no correspondence with
the node “dog.”

Trees in CoTree can be compared by moving their visualization planes close to one

another. When planes are close enough for comparison, the borders are highlighted

and nodes can be selected to start a similarity calculation. In Figure 5.11, we show two

planes on the left in comparison mode (orange border) and a smaller tree to the side

that is not currently compared. Any number of trees can be compared by moving them

close to others that are already being compared.

Figure 5.11: Trees can be compared when their planes are in close proximity. Here
the two planes on the left are in comparison mode as can be seen by the highlighted
(orange) border. The tree on the right is not currently compared with the others.

5.6.3 Solving Collaborative Tree Comparison Tasks

To gain an overview of the available information, each visualization plane can be ar-

ranged to facilitate a comparison between all available datasets. In Figure 5.12, two
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Figure 5.12: All six datasets have been moved together to facilitate a comparison across
all representations.

group members created a comparison overview by organizing their planes to facilitate

cross-comparison. Figure 5.13 shows a close-up screenshot of such a comparison. The

middle two planes show the main IM and ABC protein representation. The root node

of the ABC protein (top row) has been highlighted (green). The two trees on the left,

the alternative versions of the IM protein, and the IM protein tree show only dissim-

ilar nodes to the ABC protein (in red). However, the alternative versions of the ABC

proteins both show a few dissimilar nodes that need to be inspected further.

This more detailed investigation within the versions of the ABC and IM protein was

performed in parallel. The left of Figure 5.14 shows two collaborators who have de-

cided to each investigate one of the proteins. To inspect which nodes have dissimilar

values, they have chosen to annotate the dissimilar nodes first and to then examine the

nodes and their structure in the hierarchy in more detail. However, closer examination

of nodes can also be performed in joint work as shown in Figure 5.14 (right).

A contest task required the examination of the hierarchical structure in terms of whether

subtrees moved in the hierarchies or nodes changed position. To facilitate a structural

comparison of nodes in this sense, trees in CoTree can be overlaid and then examined.

All visualization planes are semi-transparent in order to support this type of tree com-

parison. Figure 5.15 gives two examples of structural comparison through overlay. The

top image shows an overlay of Protein ABC (blue) and Protein IM (magenta). It can

be seen that Protein ABC is generally more shallow than Protein IM but has one main
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Figure 5.13: Screenshot of the system showing all six trees. The root node of the ABC
protein in the top center plane has been highlighted.

Figure 5.14: Closer examination of a few trees. Left: Parallel work with each person
comparing three trees each. Right: Joint work comparing four trees together.

subtree that is wider and deeper than can be found in the other tree. In the bottom

image, two collaborators overlaid their exploration history including annotations of

similar trees. Similar and dissimilar nodes are highlighted. We are considering options

to auto-rotate planes to show the best possible match.
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Figure 5.15: Structural comparison through overlay.

5.7 INFORMAL EVALUATION

The tree comparison system was shown to a professor in the microbiology department

at the University of Calgary to assess its usefulness for supporting collaborative data

analysis activities. The response was very positive leading to further demonstration

sessions to his students. The students responded positively to the idea of using the

tabletop for their work in exploratory analysis of their experimental data. In particular,

the benefit of being able to explore different parts of data side-by-side and to be able

to cross-compare it, was seen as an advantage. Subsequently, ideas of this system have

been used and integrated into a Master’s thesis project—Lark (Tobiasz et al., 2009)—

that contains improved capabilities to coordinate interactions from several team mem-

bers as they work on several views of the data in parallel.

5.8 CHAPTER SUMMARY

The main contribution of this chapter is the implementation of CoTree based on many

of the design considerations discussed in Chapter 3 and 4. With the development of
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this system I have shown that decisions on many levels are necessary to design a collab-

orative information visualization system for a tabletop display. These decisions are not

always straightforward as they depend on a number of different factors. These include

not only the data, task, and analysis goals but also the collaborative environment with

hardware, input capabilities, group setup, and preferred group work strategies. Some

of the design decisions taken here, were also based on information derived from previ-

ous literature but would require further study to validate within this work context. For

example, the design of menus and parameter changing widgets needs to be validated

and compared to other designs that have been suggested for tabletop or pen-based

interfaces. In particular, the high number and type of parameters that are typically re-

quired in an information visualization system make this an important but difficult part

of the design.

CoTree incorporates support for working in parallel by allowing people to create their

own copies of views of the data, to flexibly arrange these in their workspace, and to

choose personal visualization parameters. This design of the workspace is novel for

information visualization as it breaks with the traditional design of visualization sys-

tems based on multiple windows, menubars, and dialog boxes. It does not, however,

directly support the synchronous interaction on one shared view of the data. Also, the

system does not specifically support coordination of activities between team members

that would help to transition from parallel to joint work phases. In the following chap-

ter, I introduce a project in which a simple multi-input visualization system was created

and subsequently studied to assess the need for such additional coordination support.

In contrast to CoTree, in the next chapter I start from a system designed to support only

sequential close work and look at minimal changes necessary to introduce possibilities

for parallel work.





CHAPTER 6

COCONUTTRIX: A STUDY IN

COLLABORATIVE RETROFITTING FOR

INFORMATION VISUALIZATION

In Chapter 5, I presented a new system for collaborative data analysis, CoTree. CoTree

focuses on providing individual views of the data on individual customizable view-

planes and, hence, fundamentally supports parallel work styles. Beyond customizable

view parameters, it did not include specific mechanisms to support changing work

styles as people transition from parallel to joint work styles. In this chapter, I discuss

the collaborative retrofit of an information visualization tool originally designed to sup-

port only a single analyst. The new tool, CoCoNutTrix, differs from the system seen

in Chapter 5 in that it involves one large shared visualization. With the development

of CoCoNutTrix, we,1 thus, started from a system that supported joint styles through

shared input and a shared visual representation. We attempted a minimal retrofit of the

original single-user tool to introduce mechanisms for parallel work. A study assesses

the retrofit and shows that parallel and joint work styles were supported by the retrofit.

Further, we saw that the nature of the visualization helped team members to remain

1 Portions of this chapter have been published in (Isenberg et al., 2009). Reprinted, with permission,
from CoCoNutTrix: Collaborative Retrofitting for Information Visualization; Petra Isenberg, Anastasia
Bezerianos, Nathalie Henry, Sheelagh Carpendale, and Jean-Daniel Fekete; Computer Graphics and
Applications: Special Issue on Collaborative Visualization, 29(5):44–57 © 2009 IEEE. Thus any use
of “we” in this chapter refers to Petra Isenberg, Anastasia Bezerianos, Nathalie Henry, Sheelagh
Carpendale, and Jean-Daniel Fekete.
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aware of each others’ activities and to transition between different work styles but that

additional awareness information is necessary to better support these transitions.

6.1 INTRODUCTION

In the information visualization field, a number of sophisticated tools have been de-

veloped for individual analysts. The question arises whether it is possible to simply

retrofit such systems for collaborative work by introducing several concurrent inputs

that would allow team members to work in parallel or whether new challenges would

arise in practice.

In this chapter, I report on a project in which we retrofitted a single-user information vi-

sualization system for a low-cost collaboration environment. We evaluated our retrofit

in order to assess which factors impacted team members’ collaboration styles during

data analysis tasks. To create a low-cost collaborative environment we used multiple

off-the-shelf projectors that can be simply pointed at a blank wall to create a large

display, coupled with technical solutions that replace single mouse or keyboard input

streams with multiple input devices (e. g., Jinput (2008)) as can be seen in Figure 6.1.

In addition, the visualization tool that was used for the retrofit consisted of one large

network visualization filling the entire screen. In contrast to the approach taken with

CoTree in Chapter 5, we decided not to duplicate the network visualization in individ-

ual planes but to study how teams would coordinate their interactions and work with

one shared visualization.

We retrofitted a version of NodeTrix (Henry et al., 2007), a single-user graph visual-

ization environment, to support multiple independent mice. Then, we conducted an

observational study to assess how analysts viewed our low-cost environment (e. g., Fig-

ure 6.1), and whether it effectively supported collaborative data analysis among data

experts using real datasets in the context of social network analysis. To ensure that our

low-cost collaboration setup was effective under different realistic settings, the obser-

vational study was conducted in three research organizations, using technical facilities

present in each organizations. With this research we assess one example for transition-

ing from single-user to multiple-user information visualization support for co-located
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Figure 6.1: An example of a low-cost setup for co-located collaborative data analysis
using four mice, two projectors, and a wall for projection.

collaboration. The intention of this work was that from our results and with further re-

search, our knowledge about retrofitting and hence designing co-located collaboration

visualization systems will adjust and expand and that this will lead to further design

considerations for future collaborative data analysis systems.

6.2 RELATED WORK

The system presented in this chapter was designed to support collaborative social net-

work analysis by retrofitting an existing visualization tool. Thus, this section gives a

brief introduction to social network analysis in order to provide context for the tasks

supported by our retrofitted tool. Also, to provide background to our retrofitting ap-

proach, we briefly outline other efforts in retrofitting visualization tools for collabora-

tive work.
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6.2.1 Social Network Analysis

Any collection of people or organizations connected by relations is a social network. In

the last decade, the popularity of social networking applications has dramatically in-

creased. Social network analysis tools are used by intelligence agencies to monitor ter-

rorists networks (Yang et al., 2006), by epidemiologists to study transmission networks

and to detect and contain disease outbreaks (Krebs, 2008), or company managers and

research institutes to examine the flow of communication between their employees or

the strength of their employees’ collaboration (IBM, 2007). In our work, we focus

on visual analysis of social networks that is more exploratory in nature (information

on statistical and structural analysis methods can be found in an overview paper by

Wassermann and Faust (1994)).

With the increasing popularity of social networking and the progress of Internet tech-

nologies, many systems have emerged to visualize and analyze social networks (Henry

et al., 2007). Visualizations are used in the social network analysis field to analyze how

people communicate and collaborate, what information they exchange, or what role

they play in the social group. The two most common types of representations are node-

link diagrams and matrix-based representations (Freeman, 2000). Node-link diagrams

are commonly used to understand the global structure of the network while matrices

have been shown to improve readability for detailed community analysis (Henry et al.,

2007).

From trial demonstrations of social network analysis software, we have empirical ev-

idence of spontaneous analysis sessions of co-located colleagues that came together

over a small shared display to make sense of, discuss, and explore their data. Similar

observations were reported by Heer and boyd (2005) in their study of Viszter, a visu-

alization tool for online social networks in a public setting. Social network analysis

can benefit highly from collaborative analysis through the combination of knowledge,

expertise, and skills as well as the combined cognitive power of several analysts that

can tackle larger networks together. These observations and benefits motivated us to

retrofit a tool for this type of collaborative analysis work and data.
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6.2.2 Collaborative Retrofitting

The possibilities to connect several mice, keyboards or other input devices to one desk-

top computer is limited due to support issues at four levels:

1. Operating systems: some systems such as Windows explicitly limit the support

for multiple-mice and keyboards due to security issues. Others (including Linux,

most flavours of Unix and MacOS) allow the management of extraneous input

devices but with a different level of support than the standard input devices.

For example, these systems do not provide any cursor feedback for extraneous

positional devices so this capability has to be done by applications or window-

manager extensions.

2. Low-level libraries for access to USB devices or game devices allow the reading

of input devices in system-dependent ways. In the recent years, there has been

some progress in trying to standardize access to these libraries with projects such

as JInput for Java (Jinput, 2008). There are issues raised by these libraries be-

cause the window manager applies many hidden operations to the standard input

devices (acceleration management for relative positional devices, key mappings

for keyboard devices). These are difficult or impossible to emulate through exter-

nal libraries, except when integrated with the window systems (e. g., the X Input

Extension (http://en.wikipedia.org/wiki/DirectInput)).

3. Graphical Toolkits such as Swing for Java or Qt for C++ provide support for GUI

components (Widgets) and input managements. Like most of the toolkits, they

only manage a limited set of input devices through typed events. Even for well

supported devices, like the mouse, they usually do not support more than one

reliably. Only recently have there been attempts at supporting multiple input

devices at this level (Hourcade et al., 2004; Dragicevic and Fekete, 2004; Huot

et al., 2004; Tse and Greenberg, 2004).

4. Applications like MMM (Bier et al., 1992), supporting co-located collaboration,

have been built from scratch due to the lack of toolkit and library support. How-

ever, newer generations of co-located applications have been trying to build toolk-

its or rely on special toolkits to simplify the design of these types of applications.

http://en.wikipedia.org/wiki/DirectInput
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Some researchers have described their process of retrofitting single-user applications

for collaborative use; however, only few have specifically studied this in the co-located

information visualization context and considered the implications of offering multiple

independent inputs.

Forelines describes collaborative retrofitting for Jmol for molecular visualization (For-

lines and Lilien, 2008) and Google Earth (Forlines et al., 2006). Both tools were

adapted for a multi-user and multi-display environment. Their research focuses on

describing how the visualization was adapted to be shown and interacted with in a co-

located scenario using different views on different display configurations. Both projects

have been previously described in Chapter 2.

Comparing distributed and co-located information visualization work, Mark and Kobsa

(2005) studied collaborative use of pre-existing information visualization tools and

found that group performance increased with the transparency of the system. Collabo-

rative retrofitting for this study was minimal. While a large shared display was used in

the co-located setting, participants also shared a single input.

Some graphical toolkits built for managing scene graphs (e. g. Jazz by Bederson et al.

(2000)) or information visualization (Fekete, 2004; Heer et al., 2005), use the Inter-

actor abstraction to implement modular interaction techniques. They decouple display

management and interaction, simplifying the retrofitting for multiple inputs. Moreover,

they provide support for a layering mechanism on which to draw additional cursors

and highlights without interfering with the standard display management. We imple-

mented our extensions in Java with the Infovis Toolkit (Fekete, 2004) in which Node-

Trix is implemented.

6.3 COLLABORATIVE RETROFITTING OF NODETRIX

This section includes a short introduction to NodeTrix (Henry et al., 2007) and why

it was chosen as a potentially good candidate for a retrofit to a collaborative work

environment.
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6.3.1 A Short Introduction to NodeTrix

NodeTrix (Henry et al., 2007) is a hybrid visualization in that it combines a node-link

representation and an adjacency matrix-based representation of a social network in

a single view. This makes it possible to view all data entities represented as nodes

and all inter-node relationships as links. Alternatively, one can view all data entities

as labels in rows and columns in a matrix and their relationships as the matrix cells.

Most importantly, the two representations can be used in combination, with part of the

data presented in either node-link or matrix form (Figure 6.2). Whether a particular

entity in the data is shown in either of these representations is interactively control-

lable. For instance, one can group node-link data entities to form a matrix, or select

a data entity and drag it into or out of any given matrix. This interactive dual repre-

sentation combines in a single view the benefits of node-link diagrams and adjacency

matrix-based representations, and is conducive to visual data exploration. Figure 6.2

gives an overview of the visualization in which communities within a computer-science

department are grouped together in matrices and connected by links representing co-

authorship relations.

6.3.2 Choice of NodeTrix for Collaborative Work

To explore collaborative retrofitting of existing information visualizations, we wanted

to begin with a tool that seemed to be a promising candidate in its existing state.

Thus, we first looked at the considerations discussed in Chapter 3 and 4. According to

these considerations we found a promising candidate in NodeTrix (Henry et al., 2007).

Specifically, it supports:

• Free categorization of items: Nodes can be grouped into matrices with a lasso

gesture. Single matrices can be dissolved with a single click. Nodes can be added

to or removed from matrices with drag-and-drop. Hence, work on a given item

can be done independently from work on others. This could support concurrent,

parallel work.

• Free workspace organization: Data items can be freely repositioned. This allows

individuals to work on the task in different areas of the display and independently
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Figure 6.2: NodeTrix Visualization integrating node-link and matrix visualizations.
This image shows the co-authorship network of a university department in which re-
search labs have been grouped into matrices.

of one another. In addition, it allows group members to organize information so

that they can work more closely together.

• Individual viewing preferences: Through a number of local changes in the represen-

tation, individuals can adapt parts of the representation to their own preferences.

• Fluid interaction: The number of changes of input modality, the manipulation of

interface widgets and dialogs is kept to a minimum and can improve the coordi-

nation of activities within a group.

• Focus on mouse interaction: Almost all actions are mouse-interactive, which makes

the tool accessible to retrofitting for multiple inputs. The keyboard is only re-

quired for three tasks: to type labels, to trigger undo & redo, and to trigger a

graph re-layout.
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• Minimal global changes: NodeTrix includes only two possibilities for global changes,

limiting the possibilities for accidental changes that affect all group members.

This may lead to less interruption of the group work.

In addition, several practical aspects of NodeTrix made it a good candidate for our

work. It has previously been used successfully with experts in the context of social

network analysis and has been shown to be useful in single-user work (Henry et al.,

2007). We also had access to the underlying source code and could make necessary

adjustments to introduce concurrent inputs. We nick-named our retrofitted co-located

collaborative NodeTrix—CoCoNutTrix.

However, some of the considerations as outlined in Chapter 3 and 4 are not specifically

supported. There is no specific support for communicating findings or discoveries, solv-

ing conflicts of interaction, graphical history, or maintaining individuals’ awareness of

each other’s efforts. Thus, while NodeTrix presents a promising starting point, it is not

clear whether a retrofitted version will help group members to collaborate effectively.

Through an observational study and interviews we explored how participants utilized

our retrofitted collaborative software and whether such minimal retrofitting sufficiently

supported collaborative data analysis. We were specifically interested in seeing how the

following questions applied in the context of parallel and joint work phases:

• Is communication between analysts enabled?

• Do interaction conflicts occur that hinder the collaboration?

• Can group members stay aware of each others’ work?

• Are group insights achieved?

• What is the qualitative analysis experience with the system?

6.3.3 Implementation Details

To implement CoCoNutTrix, we made adjustments to the underlying source code. We

kept all our re-implementation choices to a minimum. Wherever possible we opted to

leave things as they were, as our goal was to study whether a minimal retrofit would

accrue collaboration benefits.
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General Collaboration Support

One of the challenges in re-designing software for collaboration is that global changes

should be kept to a minimum to avoid interrupting group work. Yet, many information

visualization systems, NodeTrix among them, offer a high number of parameters to

change the visualization output. In our retrofitted tool we turned off menu bars and

control panels and chose appropriate default values for all visual features such as link

width, colour, or label size appropriate for our task and dataset. The defaults and

available functionality were chosen to work well with the type and size of dataset that

we were working with. Other tasks and datasets may require different defaults.

Since the main current operating systems do not support multiple windows to be in

focus we chose to provide a fullscreen visualization environment, in which no acciden-

tal resizing, repositioning, or a change of focus of the application windows could occur.

Since all control panels were turned off already this was achieved by giving all available

screen space to the rendered visualization.

Adding Multiple Inputs

In NodeTrix, since mouse interaction is the most common type of input, we decided

to give each collaborator their own. On the other hand, keyboards were only used for

three relatively rare interactions (labelling, triggering a global re-layout, and undo &

redo) and take up a lot of physical space on the table, we decided to provide one shared

keyboard.

To capture independent input from any attached mouse, we used the JInput library

(Jinput, 2008) and added a GlassPane, a transparent panel, on top of the application

to render the additional mouse cursors and dispatch modified mouse events to the

application. We derived a new mouse event class that carried individual mouse ids

in addition to the traditional mouse event data. These ids were necessary to be able

to react to person-specific input. In addition, user-specific data structures were put in

place to keep track of which items were being drawn or dragged by which mouse. For

example, the lasso gesture was used to select multiple nodes. To capture this gesture

it was necessary to save a mouse path per person. Appendix A.3.1 contains some
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sample code detailing modifications to mouse events and selection that were necessary

to accommodate multiple synchronous inputs.

In keeping with the spirit of making as few changes as possible in our retrofitting

and because it has been suggested that social protocols are often an effective conflict

resolution method (Tse et al., 2004), we chose to leave the resolution of conflicts to

these social protocols.

Changing Representation and Interaction

We made three changes to visual representation and interaction: (i) We provided addi-

tional visual feedback. To differentiate the available mice, each cursor was enlarged to

50×50 pixels and received an individual colour. Click or drag interaction from these

mice created a similarly coloured glow effect on each clicked node or matrix. We ex-

tended the rendering code for both objects and rendered a coloured semi-transparent

rectangle on top of them to achieve this effect. (ii) We changed keyboard input for ma-

trix labels. Previously, labels were created by selecting a matrix and typing the desired

text. When several mice are attached to the application, several matrices can be clicked

on and in focus at the same time and, thus, it is unclear to which one a label should be

added once a group member starts typing. To circumvent this problem, we created a

new label object, representing the label text. This object was added to the visualization

after a team member finished entering text. It could then be dropped on a matrix to

create a label. (iii) We mapped several operations that were previously accessible in

control panels, to a mouse gesture. To allow zooming in and out of rendered matri-

ces, for example, we mapped the resizing action to the mouse wheel, a simple fix to

address the previously mentioned problem of several matrices being possibly focused

on concurrently. All the interactions were implemented using Interactor objects. This

allowed decoupling the interaction from the visualization rendering and from the logic

of the application. This feature of the InfoVis toolkit made the retrofitting easier.

Retrofitting Cost

Estimating the retrofitting cost is difficult as it relies on the developers’s knowledge of

the underlying code and the number of places to edit. As an indication of the amount



112 Chapter 6 CoCoNutTrix: Collaborative Retrofitting for InfoVis

of code, we created ten classes and wrote less than a thousand lines of code to retrofit

NodeTrix. NodeTrix is based on the Infovis Toolkit (~ 750 classes, ~ 65 000 lines of

code) and contains around 50 classes and 10,000 lines of code. We only extended

the classes in charge of the interaction and created a number of classes to detect and

draw the multiple mice. The retrofitting was mainly conducted by the author of this

dissertation, an expert in Java but new to both the application and the toolkit it used.

It took one week full-time to retrofit NodeTrix with help from the main developers of

NodeTrix and the InfoVis toolkit.

6.4 STUDY

The goal of our study was to determine whether our retrofitted version of NodeTrix

could support collaborative social network analysis in realistic settings and to examine

how groups viewed our cost-effective design decisions. We strove to provide a study

environment as close as possible to (a) real environments, (b) using real data, and (c)

with data experts who are (d) performing real social network analysis tasks.

We studied groups of four experts performing social network analysis using data from

their own organization. Our participants were experts in the data, not social network

analysis experts. To ensure that our collaboration setup was effective in different real-

istic settings, the study was conducted in three organizations (Org A, an educational

institution, Org B and Org C, research organizations) using existing technical facilities.

6.4.1 Social Network Data

Our three organizations have an interest in determining how their internal research

groups collaborate and how effective these collaborations are. We, therefore, decided

to use research collaboration social networks as data for our study. Given that research

publications are a good indication of collaboration, the co-authorship network of each

organization was used as a dataset. Authors in the dataset became nodes of the net-

work, and co-authorship relationships became links. Each institution had a high num-

ber of authors (exceeding 800 in all three), making the analysis difficult to complete

in less than one hour. To ensure a whole experimental session could be concluded in
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Org. Screen Size Resolution Projectors Distance Figure

A 1.5 m × 1.1 m 2048 × 1536 2 × 2 1.0 m 6.3, left
B 4.0 m × 1.5 m 2560 × 1024 2 × 1 1.5 m 6.3, right
C 2.0 m × 0.8 m 2560 × 960 2 × 1 2.0 m 6.1

Table 6.1: The physical study setup in the three organizations.

approx. 1.5 hours, thus making it easier to recruit knowledgeable experts with limited

available time, we filtered out authors with a low number of publications. This resulted

in 423 authors for Org A, 327 for Org B, and 430 for Org C.

6.4.2 Participants

44 participants (14 female) took part in our study. All had been with their organiza-

tion for at least 6 months and were experts in either parts or the entire social network

they were asked to analyze. Their positions included senior professors/researchers,

group and project leaders, administration personnel, human resources personnel, tech-

nical personnel, and few graduate students. We recruited four groups (16 participants)

in Org A and Org C, three groups (12 participants) in Org B. To ensure a realistic

and comfortable collaborative setting, participants were either work collaborators or

friends. With the exception of only one person, all participants reported to be familiar

with their group.

6.4.3 Apparatus

Resources in the organizations differed slightly, but an effort was made to keep the

settings as similar as possible. The same visualization software ran on a dual core

3GHz CPU, with 2GB RAM, running Windows Vista. In each setting, the four physical

mice were colour-coded to match their respective cursors on the screen. The details of

our physical setup can be found in Table 6.1.
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Figure 6.3: Study setup in Org A (left) and Org B (right) using display and computer
resources available at each organization.

6.4.4 Task

Participants were presented with a visual representation of a social network that they

had intimate knowledge of in terms of: actors (i. e., researchers), their roles and po-

sitions in the organizations, and their working relations. Participants were asked to

create a representative view of the researchers in the organization that could later be

printed in poster form. They were provided with a single shared network representa-

tion using a force-directed layout (LinLog as presented by Noack (2005)). For this task

they were asked to identify and name the different communities, defining their own

criteria. This type of open-ended task of identifying communities and examining their

connections is commonly performed in social network analysis (Wassermann and Faust,

1994).

6.4.5 Procedure

Each study session lasted approx. 1.5 hours. Participants were asked to complete a

brief demographic questionnaire eliciting their background, their familiarity with the

rest of the group, the dataset, and their experience in using social network software

(for the full questionnaire see Appendix A.3.2). They were then introduced to the

NodeTrix collaborative system and were allowed to experiment with it for 15–20min
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on a training dataset. After reporting to feel comfortable using the system, they pro-

ceeded into the main task of organizing and labelling the co-authorship social network

of their organization. The task ended when they completed their labelling and group-

ing of the network, or when they reached the 40min mark. After a short break, the

entire group took part in a semi-structured group interview eliciting their opinions on

the task and the system. We asked interview questions from different categories: in-

formation content, collaboration experience, awareness and history, work process, and

the display space. For the full list of possible interview questions see Appendix A.3.2)

An experimenter was present for the duration of the study to answer any questions.

6.4.6 Data Collection and Analysis

Apart from the pre-trial questionnaire, observations, and interview, a number of other

data were collected for later analysis. All sessions were video-captured from two dis-

tinct locations, one focusing on the participants and one on the screen. Moreover,

detailed system logs were stored for each session capturing individual mouse move-

ments and mouse events with the data items that were interacted with. Finally, an

observer was present taking detailed notes on the use of the system and interaction

of the participants. There was a different observer for each organization, due to the

geographical distance between the three locations (Paris, France; Calgary, Canada; and

Sydney, Australia).

To analyze our data we first combined the observations and notes from the three ob-

servers in an online document and met via video conference to discuss our joint obser-

vations. Next, each observer created transcripts of the interviews conducted at the end

of each study and included these in another online document. Each observer used their

own preferred transcription tool; I used the same as for the study discussed in Chap-

ter 4. We then combined our information from transcribed interview data, notes, and

observations in affinity diagrams to reveal patterns in the data. We created these affin-

ity diagrams using an online spreadsheet for remote collaboration. We call this form

of remote affinity diagram an aSynchronous Affinity Union List. Affinity diagram cate-

gories included topics such as group characteristics, work processes, qualitative work

experiences, conflicts, or awareness. For example, an affinity diagram category contain-

ing mostly interview data was entitled “Would have preferred to do task alone? ” and



116 Chapter 6 CoCoNutTrix: Collaborative Retrofitting for InfoVis

would include descriptions such as “No, saw biggest benefit in shared knowledge and

consensus,” “3 say no, due to sharing of knowledge, being more fun - doing it alone is

work in the group is fun. One part does network analysis as part of his work. He would

have liked to do a different strategy that the group didn’t adopt and he would have

preferred to do the task alone.” Information such as this could then further be coded

by identifying different reasons for the preferences such as “fun, knowledge sharing,

task strategy.” The coded results for this category, for example, are reported on in the

next section. The affinity diagram’s categories as well as the interview questions can

be found in Appendix A.3.2. Using the final affinity diagram categories, we compared

the results from the three organizations and searched for overlaps in work patterns. I

then took system logs from all the study sessions, analyzed interaction patterns and

conflicts, and compared them with our observational data. We then combined all of

our coded information to derive and describe our study results as discussed next.

6.5 RESULTS

This section presents how our retrofitted collaboration environment provided collabo-

ration support and assesses whether this support was effective. We group our results

according to our study questions from Section 6.3.2 and take inspiration from the “me-

chanics of collaboration” (Gutwin and Greenberg, 2000) or low-level actions and inter-

actions that a collaborative system must support in order for group members to be able

to complete a task in a shared manner. Similar to Gutwin and Greenberg (2000), we

consider the collaboration to have been effective when activities could be completed

successfully, and if no major errors or conflicts arose.

6.5.1 Explicit Communication

In face-to-face settings like ours, the majority of explicit communication is verbal and

is the main means to establish a common understanding of the task at hand.

Observations:

We observed frequent verbal communication: in 9 of the 11 groups, lively communica-

tion arose around the content of the data, often in phases of joint work between at least
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two team members. We observed two types of explicit communication: running com-

mentary and direct discussions. Running commentary was common in parallel work

when participants wanted to quickly inform others of an action performed or planned

without an intent to start a conversation. Direct discussions were used to directly con-

tribute to social knowledge building during joint work: groups exchanged rational and

argumentation regarding actor placement or grouping choices, group members would

agree, disagree, and negotiate, building a shared understanding of the network they

analyzed.

Since participants were not directly interacting with the display, our system needed

to facilitate deictic references and gesturing for communication in and with a group.

Participants performed deictic references not only by pointing with their hands at the

display and making verbal references, but also by gesturing and pointing indirectly with

their uniquely coloured mouse cursors. Moreover, they repurposed the system to their

communication needs, for example by enlarging an object to attract attention. During

phases of joint visual attention, mice were commonly moved to the joint focus area to

show that attention was given to a specific information item that was under discussion.

Requests for Improvement:

Participants only requested additional features to support deictic references. This seems

to suggest that transitioning from parallel to joint work was hindered by the inability

to easily find the object under discussion or question. Three groups asked for a visual

feature, such as an individually controlled glow or animation, that could explicitly draw

the visual attention of the group to a particular mouse cursor.

Summary:

We observed that our system provided adequate support for intentional verbal commu-

nication, facilitated mostly through the face-to-face setting. Participants made creative

use of the visual representation to perform deictic referencing, with a few participants

asking for better support. One of the goals of collaborative information visualization

tools is to allow groups to come to a common understanding of the data through the

use of the visualization. Through our observations of instances of explicit communica-

tion we are quite confident that this goal was reached but simply highlighting of data

items under discussion could further improve the transition to joint work.
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6.5.2 Consequential communication, monitoring and group awareness

Information in physical collaborative settings is unintentionally given off by collabora-

tors and by artifacts as they are being manipulated, for example seeing hands move in

the space or hearing paper being dragged by others. This consequential form of com-

munication is very important in digital collaborative tasks as well, as it is an important

mechanism for gathering awareness information about what is going on, who is work-

ing on what, and where others are in the workspace. Having this awareness can help

collaborators transition between different types of work styles.

Observations:

We observed four main visual features with which the representation mediated conse-

quential communication and enhanced awareness within the group:

Colour Coding: Our environment provided a single explicit awareness mechanism in

the form of uniquely coloured cursors and matching colouring of selected arti-

facts. This colour coding indirectly indicated to participants areas of the display

and specific artifacts that others were focusing on.

Labelling: Participants labelled communities to indicate that they had been analyzed

or needed further work, implicitly informing the group of the work to be done.

For example, in 9 of the 11 groups, participants would only give a community

a name once they felt it was reasonable finalized, while in 2 of the 11 groups,

unknown or not finalized communities would be given a predefined default name

(e. g., ‘unknown 1’).

Location: Participants implicitly communicated their decisions regarding communities

by placing them at predefined areas of the display. Some groups (2 of 11) used

the periphery of the display to place finalized communities, while others used

a predefined area of the screen for ‘unknown’ or ‘draft’ communities (2 of 11).

Although in most cases this placement started out unintentionally, it often became

an explicit work practice (e. g., “I am putting unknowns to the right”).

Scale: In 6 of 11 groups, matrices representing finished groups were scaled down in

size which communicated that they should not be edited further.

Participants generally reported to have been aware of group work processes on the

visualization. Yet, we observed several participants stop their interaction for moments
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at a time and focused their attention on the representation. When asked about this

behaviour in the interview, they reported to have done so to gain an overview of what

had changed in the dataset, what the group strategy was, and what areas they could

work on next.

Requests for Improvement:

One known issue that pertains to awareness is that people easily lose their mouse

cursors on large displays (Baudisch et al., 2003). Participants in 6 groups reported to

have lost their cursors occasionally, even though we had increased the mouse cursor

icon width and height to four times that of the standard Windows desktop and given

each cursor a distinct bright colour.

During the interview, some groups (5 of 11) also asked for more explicit ways of la-

belling and annotating their work to assure that decisions would not get lost in the

work process (e. g., changing colours of communities to indicate they are completed,

giving matrices specific descriptions like “Do not merge!”, etc).

Only participants in 4 of the 11 groups requested a feature for viewing the interaction

history of the group, to see each other’s actions and the history of a specific area of the

network.

Summary:

Although our participants were able to collaborate on the retrofitted setup, half of

them felt the coloured cursors did not provide enough awareness of other peoples’

actions. Annotation functionality was also requested to mark the state of communities

indicating that additional annotation features may be required. However, most felt that

although detailed actions were missed, they were globally aware of the group process

and progress. Interaction history was not frequently requested maybe due to the task

and length of our study. We generally saw the visualization itself being used as the

medium to indirectly capture, represent, and communicate the group understanding

and knowledge of the communities in the dataset.

6.5.3 Action coordination, assistance, and protection

An important part of effective and fluid collaboration is how collaborators mediate their

actions and share common workspace resources. We observed how team members
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organized their actions to avoid conflict with others and strategies they adopted to

efficiently complete their task.

Observations:

Our participants clearly organized their actions in order not to conflict with others. This

was achieved by either explicitly dividing the task and working areas through verbal

communication, or by observing where others were working. Collaborators worked

predominantly individually or in pairs in different areas of the workspace, moving flu-

idly between closely and loosely coupled work styles. When questions arose or global

changes had to be negotiated, all teams came together and evaluated a solution, per-

forming coordinated actions on the workspace. Coordinated actions were also common

when participants helped each other out. Such peer aid would either be requested (e. g.,

“Could you remove X from that community while I . . . ” or would be voluntarily offered

by observing the actions of others (e. g., “Let me do that”).

In groupware systems accidental conflicts of concurrent input can be disruptive and

special control mechanisms have been suggested (e. g., Gutwin and Greenberg (2000);

Ringel Morris et al. (2004)). Since we chose not to provide any conflict control mecha-

nism, we logged potential sources of interaction conflicts to validate our choice. These

included two or more participants grabbing the same node or matrix, or trying to lasso

select an item that was currently worked on by another person. These conflicts oc-

curred rarely. In 10 of the 11 groups, a maximum of two conflicts were logged with

concurrent dragging actions being the most common one (4×). One group had 7 such

conflicts, mostly caused by two people interacting with the same matrix concurrently.

When discussed in the interview, none of participants perceived the logged conflicts as

problems. Outside of the logging, we observed conflicts dealing with inadvertent drop-

ping of elements in matrices or a participant editing matrices after others considered

it finished. All these conflicts were solved socially, and some groups even established

rules (e. g., “ask before editing a reduced size matrix” or “if you see labels don’t touch it,

that’s the rule”). When interviewed, participants felt these conflicts were easily solved

and did not interfere much with the task.

Requests for Improvement:

Participants perceived little conflicts of interaction. When asked if they would have

wished for a mechanism to lock control or indicate ownership of items, all but one

group responded negatively.
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Summary:

As in previous studies of collaborative work (Elwart-Keys et al., 1990; Mandviwalla

and Olfman, 1994) and even collaborative data analysis tasks (e. g., (Tang et al., 2006)

or Chapter 4) we observed participants moving between joint and parallel work styles.

Our participants coordinated their actions very fluidly. We feel that our choice of not to

include specific protection mechanisms was further justified as conflicts were resolved

socially and mistakes could be easily reverted through local or global undo.

6.5.4 Analysis Strategy and Group Insight

One of our original goals, was to determine if our discount environment supported

successful collaboration with the visualization. An indicator for successful collaborative

visualization use is the establishment of an effective strategy leading to group insight.

Group insight is difficult to measure (Stahl, 2006), but can be visible in interactions

between participants and with the visual representation, or interview comments like

“we found out that . . . ”

Observations:

Although no explicit planning support was given in our environment, most of our partic-

ipants verbally negotiated their strategies. Almost all groups (9 of 11) started the task

with a short group exploration phase in which initial obvious clusters were identified.

The establishment of an analysis strategy seemed to evolve naturally from conversation

and participants observing each others’ actions.

When asked, all 11 groups reported to have gained new insight from working with the

dataset and reported several surprising or confirmatory findings, such as close collab-

oration patterns between research groups previously thought unconnected, and even

findings about their close working environment “I had no idea that many people col-

laborating in our lab, I even learned things about my own team!” Peer-learning and

teaching of these insights occurred often in groups that had an imbalance of shared

knowledge. In one group, for example, a participant helped to identify the initial com-

munities and taught others about parts of the dataset they were unfamiliar with, so the

work could then commence in parallel.
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Summary:

We observed participants smoothly establishing an analysis strategy and they did not

request any additional features for activity planning. Observations and comments

showed that our tool helped the group gain insight, teach each other facts about the

data, and support knowledge building in the group. We see this as an important part

of a successful collaborative data analysis environment.

6.5.5 Work preference

As an indication of successful collaboration, we asked participants whether they pre-

ferred conducting this analysis task as a group rather than individually.

Observations: The majority (40 of 44) of participants preferred group work and 4 pre-

ferred to do the task alone. Three of the latter were among the most knowledgeable

members of their group and felt that they could have done a reasonable job on their

own, although they all admitted it to be potentially slower. The fourth had a com-

pletely different opinion than the rest of her group about what criteria to use in form-

ing communities. The participants who preferred group work named as reasons for

their preference: shared knowledge (27 of 44), fun of collaboration (25 of 44), shared

process of forming consensus (6 of 44), brainstorming (4 of 44), efficiency (4 of 44),

and shared working styles (1 of 44). One participant commented that “doing it with

3 people was fun, doing it by myself would be work.” In addition, 9 of the 11 groups

reported feeling happy with the result of their analysis and the communities they had

created.

Requests for Improvement:

Most participants stated that additional time and meta-information would have helped

to resolve questions about unknown people and improve the visual presentation of the

analysis.

Summary:

Groups were generally very happy with their collaboration and result of their work.

We take this as an indication that the retrofitting was successful for this setting and

task and could effectively support collaborative data analysis as perceived by these

participants.
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6.5.6 Reaction to low-cost environment choices

While observations on collaboration and group insight can establish whether collabo-

ration in our low-cost setup was effective, observations on the usability of the environ-

ment can further inform the effectiveness of the retrofitted tool in use.

Observations:

One observed strength of the CoCoNutrix visualization was its intuitiveness of interac-

tion. All participants were at some point interacting with the information items and,

over longer periods of time, all mice in a group were in movement concurrently. Partic-

ipants were comfortable interacting anywhere on the screen. Even though the screen

sizes were slightly different, this observation was unaffected. The keyboard as a shared

device was typically used by one dedicated scribe who would type in the labels for com-

munities as they were requested. Groups rarely used features that would have created

global view changes (undo, redo and a re-layout of the graph), and when they did, it

was generally after negotiating and obtaining group approval. Five groups never made

use of these functions, two groups used them 6×, and the remaining groups used it 2–

3×. Participants commented that our low-cost setup of mouse input and large screens

supported their group work well.

Suggestions for Improvement:

Three groups expressed the need for a second keyboard to avoid interrupting others’

work process by asking for a label, or handover of the keyboard. There were 15 requests

(from all 44 participants) for functionality that was originally part of NodeTrix and was

removed during the retrofitting. These requests were mostly for visual features men-

tioned earlier, such as highlights, more meta-data, or for additional interactions (such

as sorting) on matrices. Participants reported they did not feel the sitting configura-

tion influenced their collaboration, but to further improve communication some would

have preferred a slightly curved seating arrangement to be able to talk to each other

better. In Org C, dealing with a larger network on a slightly smaller display, partici-

pants would have preferred a larger screen display or functionality to “push nodes to

get more space.” Thus, the ratio between the display and network size used in Org C

was perceived as a threshold condition for comfortable use.

Summary:

While participants requested additional functionality for the system and physical setup,
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they generally reported to have been well supported in their global task. Lack of inter-

action capability and the lack of meta-data affected their work efficiency, but the work

quality was not generally compromised. We see this fact as proof that our discounted

interface was a good compromise for this task.

The requested additional visual and interaction features are difficult problems to solve

when multiple people interact with the system. Selection actions can induce input

conflicts and parameterizing actions requires consensus as they affect the entire rep-

resentation. This is the reason we removed them originally in our retrofitting, but

further research is necessary to reduce global changes in visualizations or make them

less disruptive. While the actual sitting position did not seem to interfere with the

collaboration, we found that the display size was very important. Finding the optimal

screen size for visualization tasks requires further research attention.

6.6 DISCUSSION

To summarize our findings we return to our initial questions in regards to the utilization

of our retrofitted collaborative software.

6.6.1 Assessment of the Results

Communication

We observed frequent interaction between analysts, with the data and with the visual-

ization. Analysts slipped in and out of interaction by themselves, with the full group, or

with varying subgroups as work progressed. This confirms previous CSCW studies on

information visualization in other settings where frequent switching between loosely

and closely coupled work was observed (e. g., Tang et al. (2006) and also see Chap-

ter 4). Active data interpretation, discussion, and negotiation occurred throughout the

collaboration while participants interacted on all areas of the display. This finding is

important as information visualization analysis requires seeing and interacting with

all parts of the representation to explore all available data and avoid misleading or

incomplete data analysis.
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Conflicts

Control mechanisms to avoid interaction conflicts have been studied and suggested

(e. g., Gutwin and Greenberg (2000); Ringel Morris et al. (2004)) for co-located col-

laboration. Even though we included no specific control mechanisms, we observed

and logged few interaction conflicts between participants, echoing previous findings

(Tse et al., 2004) that people naturally avoid interfering with each other by spatially

separating their actions in the workspace. Moreover, participants did not request any

additional control mechanism features, so our decision to leave them out was further

justified.

Awareness

The visualization mediated the awareness of decisions made about the data and helped

group members to build on each others’ work. Factors like labelling were used to help

the group coordinate which data aspects were decided upon and which were still in

flux. Yet, several additional awareness features were asked for and this is a promising

direction for further work in collaborative visualization.

Group Insight

The hybrid nature of the visualization helped in facilitating, and hence observing group

insight, as it captured the evolving construction of knowledge within the group. We

noticed that participants did not simply view a matrix as a different representation of

a group of researchers in the dataset—a matrix expressed a particular research group

and together with a label became the result or artifact of choices made by one or

several participants during the collaboration. This artifact was then visible to others

and facilitated the emergence of a common understanding of the data within the group.

Thus, the visualization evolved and became an archive of the participants’ process,

what work was completed or needed discussion, and of the participants’ insight, the

interpretations and meaning that they had given together to specific information in

the dataset. Similar observations have been made by Stahl (2006) for collaborative

communication and learning in online communities.
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Qualitative Feedback

Both the chosen physical environments (use of a large back projected display and sitting

arrangements) and the use of multiple mice for interaction was positively received by

our participants. Together with other positive responses and feedback regarding the

usability of the system, we feel confident that NodeTrix was sufficiently retrofitted to

enable effective collaboration.

6.6.2 Impact for Other InfoVis Systems

The study results have implications for other information visualization researchers or

designers considering how to adapt their own single-user applications to co-located

collaborative work settings. The remainder of the chapter presents a number of dif-

ferent general considerations for retrofitting based on our study. As our study used a

qualitative observational methodology, the presented considerations should be seen as

grounded hypotheses that have to be further evaluated.

In Section 6.3.3 we have described necessary changes to allow for multiple inputs.

We believe these changes to be generally possible in other information visualization

systems. Getting differentiable user IDs may be difficult on most multi-touch tech-

nologies (a notable exception being the DiamondTouch display) and some retrofitting

techniques for these technologies may have to work around the lack of user IDs. The

most difficult changes, however, pertain to the effects of multiple people concurrently

interacting with a system. The next sections highlight the sets of common information

visualization features that may be most impacted by the introduction of synchronous

inputs and, hence, may be most important to consider when retrofitting information

visualization tools. We see synchronous inputs as an important part of collaboration

support as it allows collaborators to work in parallel.

Global Controls

Global controls can raise problems when multiple people collaborate as they may

change all team members’ view of the data. When they are working closely coupled

this may not be an issue, but during parallel work where each team member may be
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concentrated on different aspects of the data, sudden changes to the display can be sur-

prising and disruptive. For example, if a shared visualization is too large to fit on the

screen, a single team member’s panning modifies the view for all of the collaborators

which may be attempting to work in parallel. There are a number of information visual-

ization features that are commonly implemented as global controls and their design or

use may have to be reconsidered when multiple concurrent inputs are introduced. Such

features include filtering, navigation (e. g., pan, zoom), transformations (e. g., changes

between different representations, changes of data encodings), or view changes (e. g.,

projection, rotation). The amount and importance of these features will influence the

difficulty of a retrofit.

Several strategies can be followed when retrofitting global changes. The simplest so-

lution is to either remove interface features that permit global changes, implement

control policies, or simply let collaborators deal with potential conflicts themselves.

We have made good experiences with a combination of the first and last option. An-

other solution requires the development of novel interaction techniques in the system,

replacing the one causing problems. For example, zooming, panning, or filtering could

also be restricted to only influence a local scope. For example, using a node-link dia-

gram, we can imagine taking advantage of the topological information of the graph to

replace panning by bringing the neighbours of a node into the view (e. g., as in bring

and go by Moscovich et al. (2009)). Similarly, to avoid panning as much as possible,

lens techniques can be used to shrink areas of less interest and introduce new visual

features.

Introducing these more elaborate interaction features may be more important for a

number of different visualization systems. For example, in visualizations that cover the

whole display, are space-filling, or include 3D views, global changes are often central

to the tasks. A space-filling treemap (Johnson and Shneiderman, 1991), for example,

relies on zoom and filter operation and a 3D visualization such as ConeTrees (Robertson

et al., 1991) relies on global view changes for information to be understood and read

in its entirety. In this case, the visualizations may need a more intensive re-design to

introduce multiple foci exploration or coordinated views.
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Undo and Reversible Actions

Being able to undo an action is important in almost any computer program and also in

collaborative information visualization systems. An undo feature has to be associated

with a thread of actions. This makes undo for synchronous collaboration a difficult

issue to retrofit since several people could affect a single information item successively

and the effects of an undo may be harder to coordinate (Prakash and Knister, 1992).

One could simply keep a system’s current undo capabilities (like we did in CoCoNut-

Trix) but then an undo is global and will undo the last actions, no matter which col-

laborator issued it. A user-specific undo may seem semantically more meaningful but

then conflicts may arise when one team member tries to undo an action on an object

which has already been subsequently modified by a collaborator. Based on our study,

we believe that participants would prefer this personal undo, however, more meaning-

ful ways to deal with undo conflicts would have to be incorporated. In CoCoNutTrix,

participants dealt with the problem by reversing their actions manually in the interface

(by taking a node out of a matrix or back in). Adding local undo functionality to a

system may be a viable alternative approach.

Windows and Dialogs

When multiple people synchronously interact with a visualization system, the connec-

tions between interface and information display items may have to be coordinated

differently. Reimplementing multiple windows, widgets, or dialogs to allow more than

one concurrent interaction in the system will likely have to be performed. This retrofit

can be difficult but is crucial to allow for synchronous data exploration and manipula-

tion. The difficulty of this retrofit depends mostly on the underlying windowing toolkit.

It applies, in particular, to multiple-coordinated-view systems or other information visu-

alization tools that depend on a high number of dialogs and widgets. The difficulty in

retrofitting dialog boxes lies in making the right connection from an interface item to

the data that is to be affected. For example, on which data item should a colour change

apply if multiple items are currently highlighted by different people? One possibility is

to track an item+widget selection through input IDs but this would effectively hinder
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collaborators to team up and apply changes together—one highlighting the items, the

other operating a dialog box.

In CoCoNutTrix, we made a more fundamental decision. We removed all dialogs from

the interface and made only a subset of features available through direct mouse control

(left click, right click, scroll wheel, gestures). This effectively made all interaction local

to the information items. We made a fundamental choice between two options: either

to provide all possible features of the original tool which would potentially result in

more interaction conflicts or to reduce the number of features and minimize them for

the task at hand. This is a choice that similarly has to be made by other people who

are thinking about retrofitting an information visualization tool. One has to consider

what task the retrofitted tool should be used for. Is it meant to be as powerful as the

original tool? Or, alternatively, is it going to be used by a group to answer more specific

questions with specific tasks that are better solved by a group than an individual? In

CoCoNutTrix, participants solved the task well with our minimal set, so our choice was

justified. However, some of the original features were missed, so in a second redesign

phase we would reconsider this design choice. Also, for a different task or dataset we

might have to do another retrofit and consider remapping interface gestures and inputs

to other parameter changes leading to more retrofitting effort on our part.

Awareness Features

One very important aspect that a retrofitted tool needs to support is the awareness of

what has been looked at, analyzed, and about which data items decisions have been

made. In our case, this was mostly facilitated through the hybrid nature of the visu-

alization. We, therefore, hypothesize that information visualizations in which group

members can give the data meaning by either transforming data items into different

representations (as in our case), or by annotating and marking them (e. g., through spa-

tial positioning or graphical markers), will not require much additional functionality to

be added. It is likely that a large number of other 2D network and graph visualizations

can be easily retrofit in regards to awareness features. Most such tools already allow

for free spatial repositioning, which could be used to annotate or mark data by chang-

ing their position. Coupled with user-specified visual clustering, group insight could be

captured and group coordination and communication supported. Other systems should
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consider adding capabilities for data annotations. These could simply include adding

colourful labels, highlights, or the ability to reposition or reorganize information items,

if information is not already otherwise encoded in this manner.

6.7 CHAPTER SUMMARY

CoTree from Chapter 5 supported parallel work with multiple personalized views of

the same data. In this chapter, I contribute insight on a different approach. Here, a

system that initially supported more joint work through a single input and one single

data representation, was retrofit to introduce mechanisms for parallel work.

We retrofit a social network system, NodeTrix, for synchronous collaborative work

which represents the social network across the full screen. The question arises how

team members coordinate their interactions across one large shared representation and

whether parallel work would still occur, similar to what we observed in Chapter 4. Our

study results showed that our retrofit environment was reasonably functional and that

it allowed participants to work well in parallel and more closely together. Even though

we had not designed any specific conflict resolution mechanisms, participants working

in parallel hardly ever issued conflicting commands and rarely attempted to work on

one specific matrix at the same time. Due to the hybrid nature of NodeTrix and the

task given, team members were able to track team members’ interactions with the data

by observing how the visualization itself adapted and evolved during the task. In this

sense, the visualization itself captured the groups’ progress and was used as a medium

to communicate decisions and group insight among the individual team members. Nev-

ertheless, participants asked for additional awareness information to help them more

easily be aware of where each others’ work overlapped. This finding led us to further

investigate this issue of joint awareness in co-located collaboration. The resulting work

is presented in the following chapter.

In regards to the results from the study presented in this chapter, we caution that the

overall success of retrofitted collaborative software is very dependent on an identified

set of interaction capabilities of the existing software. To refine our results and to be

able to make further recommendations for retrofitting, in particular in relation to the

need to support parallel and joint work styles, it needs to be studied how other types of
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visualizations fair in a retrofitted scenario, and how they are used in real-life situations

where the outcome of the analysis has a big impact on participants’ everyday work.

This work and our previous considerations for collaborative information visualization

can be a useful starting point.





CHAPTER 7

CAMBIERA: COLLABORATIVE VISUAL

ANALYTICS IN DOCUMENT COLLECTIONS

In this chapter, I introduce Cambiera, a collaborative tabletop system for the analysis of

text document collections (see Figure 7.1). With this last case study, I look more closely

at the issue of providing awareness to team members who are working in parallel in

order to encourage group discussion, negotiation, and shared knowledge building. The

work is based in particular on findings derived in Chapters 4 and 6. The systems pre-

sented in these two chapters did not include specific visualization based mechanisms to

encourage the transition between different work styles. The possibility to easily divide

the work and to freely organize, move, and transform information items encouraged

group members to analyze data in parallel. Particularly, the fact that CoCoNutTrix

included implicit mechanisms that helped team members to remain aware of what

had been worked on helped teams to transfer to more joint activities of discussion or

validation of their findings. Cambiera is an attempt to more specifically incorporate

awareness support to encourage transitions between parallel and joint work during

data analysis.

With Cambiera, we1 designed a tabletop system that allows teams of up to four people

to collaboratively search through document collections. It incorporates the possibility

to divide the work, supports free arrangement of documents and search results lists,

and displays indicators of search and read activities in each person’s view of the data.

1 Portions of this chapter have been published in (Isenberg and Fisher, 2009). Thus, any use of “we”
in this chapter refers to Petra Isenberg and Danyel Fisher.
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Figure 7.1: Two team members collaborate around Cambiera, implemented on a Mi-
crosoft Surface.

An exploratory study at the end of the chapter shows that this design did indeed support

a range of collaboration styles and that the awareness features were seen as a valuable

feature by the pairs participating in the study.

7.1 COLLABORATIVE BRUSHING AND LINKING

With Cambiera, we explore the idea of trading off individual and group work in a

context of collaborative visual analytics. Our work concentrates on situations in which

small groups of people come together in face-to-face meetings to make sense of textual

documents. Our goal is to support both the individual and the group in collaborative

foraging activities including searching for, reading, and extracting information from

visual representations. By providing visual awareness of individual activities we hope

to encourage group discussion, negotiation, and shared knowledge building. We use

an interactive multi-touch table (Figure 7.1) as the single shared display on which

foraging activities are performed. The particular task we discuss in this chapter is that
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Figure 7.2: Example of a classig brushing and linking scenario. Two scatterplots of the
same three-dimensional dataset are shown. View A shows the x/y dimension and View
B shows the x/z dimension. Four data items in A are brushed and highlighted and this
interaction is reflected on the corresponding items in View B.

of analysts attempting to find information relevant to reconstruct a story from a large

set of textual documents.

We introduce the concept of collaborative brushing and linking as the basis of an im-

plicit visual awareness technique across multiple team members for information visual-

ization settings. The idea of “brushing and linking” (Buja et al., 1991) is now seen as

a standard technique in many information visualization contexts. “Brushing” refers to

the selection (and often subsequent highlighting) of data items in one view; “linking”

means that changes in state to a datapoint are reflected in all places that the datapoint

is shown. An example is given in Figure 7.2.

Similar to this need for integration and linking of individual views in applications for

single analysts, we define collaborative brushing and linking as:

An awareness technique, in which the interactions of one collaborator on a

visualization are visible to other collaborators viewing the data items in their

own visualizations or views of the data.

This concept augments traditional brushing and linking with additional information

about the social data analysis process. Collaborative brushing and linking allows team

members to communicate implicitly, by sharing activities and progress between visu-

alizations and, thus, may help them to transition more easily between individual and
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joint activities. In asynchronous situations, collaborative brushing and linking essen-

tially becomes interaction-based annotation: it is a way of labelling data with interac-

tion information for other team members to consider. Here, we consider synchronous

work, where collaborative brushing and linking is an awareness tool, communicating

current work. During synchronous work, a collaboration must maintain a balance be-

tween individual and collaborative activities. The collaborators must be able to share

knowledge with each other, establish common ground, and reduce redundant work. Cues

that help to support these tasks can include metadata on what information has been

looked at and by whom, when and how long information was read, or it could capture

additional information, such as importance and reliability indicators, that collaborators

wish to add to the data.

7.2 BACKGROUND: VISUALIZING AWARENESS

When collaborating in shared workspaces, people naturally make use of a variety of

cues to learn about what their teammates may be working on (Olson and Olson, 2000).

By explicitly using verbal information and deictic references, items and actions in the

workspace can be specifically referenced while facial expressions, gestures, body pos-

tures, or other auditory feedback may implicitly reveal cues about what a particular

person may be working on at a given moment. How to support collaboration through

design of awareness features is an active research topic in Computer-Supported Col-

laborative Work (Carroll et al., 2006). This section discusses techniques developed by

CSCW researchers to support workspace awareness as well as techniques that have

been developed to display interaction history in information visualization applications.

These are related to the concept of “collaborative brushing and linking” as is used in

the Cambiera project.

7.2.1 Workspace Awareness in Collaborative Work

The topic of awareness has received considerable past research attention by human

factors researchers and, in particular, in the area of distributed collaboration. Sev-

eral different types of awareness have been discussed, including, for example, infor-
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mal awareness (e. g., Dourish and Bly (1992)), conversational awareness (e. g., Clark

and Brennan (1993)), structural awareness (e. g., Leland et al. (1988)), or workspace

awareness (Gutwin and Greenberg, 2002). Closest to our goal of providing awareness

of interaction with information items in the workspace, is the concept of workspace

awareness.

Workspace awareness has been defined as the “up-to-the minute knowledge a person

uses to capture another’s interaction with the workspace” (Gutwin and Greenberg,

2002). It includes information about the workspace itself, team members’ locations

within in, as well as their activities and intentions relative to the tasks. Gutwin and

Greenberg (1998) discuss workspace awareness for distributed collaboration and pres-

ent several techniques designed to increase workspace awareness for people working

synchronously from remote workstations. Their techniques include split workspace

views, feedthrough and action indicators, as well as multiple vs. shared consistent rep-

resentations for distributed work scenarios.

In co-located collaborative scenarios, workspace awareness is supported by territorial-

ity, artifact feedthrough, and consequential communication (Nacenta et al., 2007a). As

our focus is on supporting awareness for this type of collaborative work scenario, we

briefly discuss how these three forms of awareness relate to our work. Research on

collaboration in tabletop workspaces has shown that group members divide their work

areas into personal, group, and storage territories (Scott et al., 2004). A team member’s

increased use of personal spaces to perform individual work may hinder workspace

awareness. This may particularly be the case when these spaces are spatially separated

across a large display, and interactions require detailed work and the manipulation

of small data items. As we have frequently observed detailed work in personal, sepa-

rated parts of the workspaces (see Chapter 4, 6, and Tang et al. (2006))—support for

workspace awareness may be particularly useful for data analysis. Artifact feedthrough

includes feedback sent to others in the workspace through actions on workspace ar-

tifacts. For example, hearing a piece of paper being dragged across a physical table

is considered auditory artifact feedthrough, as others receive feedback and awareness

information of the dragging action (Baker et al., 2001). In virtual workspaces, actions

on artifacts may go unnoticed as they rarely produce auditory feedback themselves,

and because actions may be quite sudden and ephemeral. Collaborative brushing and

linking addresses this problem and offers a type of artifact feedthrough by making inter-
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actions with an artifact directly visible on other copies of this artifact. This information

is also made persistent so that it can be used at a later point when needed. Conse-

quential communication is a type of feedthrough that communicates information about

interactions in the space through the movements of arms and bodies. In co-located vir-

tual workspaces with direct-touch capabilities, feedthrough about who is manipulating

a workspace artifact is naturally available. However, one can design interaction mecha-

nisms that do not require one to reach and directly touch workspace items. For example,

Nacenta et al. (2007a) discuss several direct and indirect techniques and their influence

on awareness in tabletop workspaces. They conclude that direct-touch drag-and-drop

interaction had the best all-around performance in their study and ranked highest in

preference. They also argue that the use of arms and hands over the workspace offers

the most awareness cues to the group in terms of consequential communication. The

Cambiera project makes use of direct-touch interaction and does not use indirect object

manipulation techniques such as laser pointers or radar views. Therefore, consequen-

tial communication about general interactions in the workspace should be supported.

7.2.2 Visualizing Interaction

A general set of questions that one may have about interactions in the digital workspace

has been previously proposed (Gutwin and Greenberg, 2002; Tam and Greenberg,

2006): where, who, what, how, when, and why. Five of these categories were initially

used by Gutwin and Greenberg (2002) to describe awareness for real-time groupware

and extended by Tam and Greenberg (2006) to cover asynchronous change awareness.

A subset of these questions has been previously considered for the visualization of peo-

ple’s interaction with an information visualization system. However, visualization of

interaction history is often done retroactively, based on log files created while a person

was interacting with a graphical user interface (GUI) on a client or corresponding with

a server. HotMap (Fisher, 2007) is an example of such a visualization of Microsoft’s

Live Search Maps usage, showing—in form of a heatmap—which map tiles had been

loaded by viewers of Live Maps. Willett et al. (2007) discuss the visualization of social

activities in terms of information scent (Pirolli and Card, 1999) for social navigation

(Dourish and Chalmers, 1994). Their work on Scented Widgets embeds small visu-

alizations into standard user interface widgets to aid navigation and show possible

avenues for discovery. While Scented Widgets focus on supporting navigation cues, our
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work uses the dynamic and changing information created during synchronous inter-

action in a shared workspace to offer real-time awareness of team members’ actions.

Despite this difference, our techniques may similarly serve as social navigation cues

in co-located workspaces. Similar to the goals discussed by Chuah and Roth (2003),

it may also serve to create common ground during collaboration by providing artifact

feedthrough.

7.3 CAMBIERA: A TOOL FOR CO-LOCATED COLLABORATIVE

INFORMATION FORAGING

Our tool, Cambiera, is designed for information foraging in the domain of visual ana-

lytics (Thomas and Cook, 2005). In the following sections, I describe the data and task

used when developing Cambiera, its general system components, and then discuss the

awareness features built into the tool in detail.

7.3.1 Data and Tasks

The task we are interested in exploring is that of intelligence analysts attempting to

reconstruct a story from a large set of textual data. This scenario is not an original one;

rather, we have adapted it from a series of ongoing challenges within the Visual Analyt-

ics (VAST) community (e. g., Grinstein et al. (2006)). In the standard VAST scenario,

intelligence analysts attempt to decode a large set of documents. Buried within the

documents is a single story, spanning multiple documents, that must be reconstructed.

For example, a set of newspaper articles may all provide indirect evidence of a crime

being planned.

Intelligence analysts often use an exploratory, cyclic process of foraging, evidence gath-

ering, and hypothesis generation. Our system allows analysts to search through a

document collection; it visualizes the resulting documents, and allows direct access

to document texts in order for the analysts to get detailed information and to form

hypotheses. Evidence can be gathered and arranged on the surface to represent in-

formation relevant for a specific hypothesis. Our main dataset comes from the VAST
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2006 contest (Grinstein et al., 2006), representing some 1200 fictitious newspaper arti-

cles. We will describe two fictional analysts working together on an analysis reasoning

task, in order to outline features of our tool. The analysts, Ana and Ben are trying

to understand an outbreak of BSE, or Mad Cow Disease, in a farming town; they fear

this outbreak may be linked to corruption in city hall. Ben is investigating newspaper

articles that mention BSE, while Ana focuses on political events.

7.3.2 Implementation

The design of Cambiera is intended to take advantage of the special properties of multi-

touch, co-located surface computing. Cambiera runs on a Microsoft Surface interactive

tabletop (Figure 7.1) which supports multiple, independent, direct-touch inputs on

a horizontal display with a resolution of 1024 × 768. Cambiera currently supports a

small group of up to four analysts, working together. Cambiera was implemented using

WPF and the Surface SDK and did not make use of other external libraries. All visuals

were created from scratch using features built into WPF and using Microsoft Expression

Blend to create specific XAML representations. To implement document searches, we

used regular expressions. The details of the implementation are property of Microsoft

and I cannot disclose them in this thesis.

7.3.3 General System Description

Although explicit coordination overhead is lower, since team members are in immediate

proximity, implicit sharing can relay rich information rapidly. Scott et al. (2004) have

suggested that allowing team members to maintain a personal region of the tabletop

allows them to negotiate which work is local and which collaborative. However, rigid

boundaries may obstruct collaboration: we want to allow team members to flexibly

move from loosely coupled to tightly coupled collaboration (to use the model articu-

lated by Tang et al. (2006)).

Our design is also influenced by SearchTogether, a collaborative web-search tool (Mor-

ris and Horvitz, 2007). In SearchTogether, remote collaborators share query histories

and result lists, allowing them to efficiently search the web in groups. Similarly, we
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Figure 7.3: Interaction starts with a search. Each team member is assigned a colour,
which is reflected in the search button (top) and keyboard (bottom).

want to make it possible for team members to see each others’ query and reading his-

tories. Cambiera is distinctive as a visual support for information foraging. We want

to support information foraging with information visualization, allowing collaborators

to explore different perspectives or subgoals from their own views of the data that are

only connected by visual awareness cues. In practical terms, this means that we want

to allow Ana and Ben to work independently. If they find something in common, or

find that they are working on the same documents, they can work more closely.

Specific functionality of Cambiera is described in the following sections. We use these

four questions about collaboration awareness to guide our discussion:

• Did another search also find my document?

• Has someone else issued my search?

• Has someone considered the same document?

• Has someone read the same document?

7.3.4 Presenting Search Results

The core of the system is a search tool for finding documents of interest. In general,

an analyst starts off by pressing a coloured search button on their side of the table,

which brings up an on-screen keyboard (Figure 7.3). A search issued from each of

these keyboards results in a coloured search box, which contains the search results.
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Figure 7.4: Initial search result overview. One closed search box (top), and one opened
search box showing five result details (bottom).

These search results are first shown minimized (Figure 7.4, top). Clicking the arrow

tab on the right side expands the set to show the individual results returned by the

search (Figure 7.4, bottom). In the expanded view, each gray rectangle stands for one

of the found documents. All documents are ordered by their publication date. Dark

gray bars below each document indicate how many times the search term occurs in the

document in order to give a hint about which documents may be interesting to explore,

reminiscent of ScentedWidgets (Willett et al., 2007). On the left side of the search box,

we see the search term and a written count of both the search results returned and

the number of those that have already been read by any collaborator. A faint bar on

the left redundantly encodes the number of documents returned relative to the total

number of documents in the collection. The bar is drawn on a log scale to allow easier

relative comparison of document count for small result sets. Like all other objects in the

interface, the search boxes can be freely moved around and rotated in the workspace.

When an analyst is done with a search, it can be deleted.

In our scenario, Ben issues a search for FDA (Figure 7.3); he has already searched

for BSE. By looking at the returned fda search box, he immediately sees that only five

documents were returned and opens the result list to see further details (Figure 7.4).

By looking at the term frequency indicators, he can see that the last two documents

include the term fda several times and decides to explore those first. Now he wants to

find out more about the overlap of his two searches.
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Figure 7.5: Colour scales to encode search terms. Each analyst’s searches receive one
hue of their base colour.

7.3.5 Did another search also find my document?

If a single document was found by two different search terms, then it may be more

likely of particular interest. If two investigators are following different paths and stum-

ble on the same results, that source may have particular salience. The following dis-

cussion shows how collaborative brushing and linking can help analysts to follow each

others’ searches. In Cambiera, collaborative brushing and linking requires that the

system be able to track some information about which team member is interacting.

While our surface cannot distinguish between different people’s input (unlike the Di-

amondTouch (Dietz and Leigh, 2001)), the strategy carried out in this system helps

maintain identity. Each team member gets a palette of colours that are all variations of

one hue (Figure 7.5); each search gets a distinctive colour in that palette. In our exam-

ple, Ben’s searches are orange and always distinctly different from Ana’s blue searches.

Each document representation that is hit by a search is tagged with the distinct search

colour. For example, in Figure 7.4, the background behind the word bse received a

specific shade of orange to mark this search term. Each document in the search results

received a coloured stripe in the colour of that keyword to indicate that this particular

keyword was found in the document. By looking at the stripes (Figure 7.4), we can

see that the first three documents in the fda set were found both by the results for bse

and fda while the last two were only found by fda. This provides a simple way for do-

ing AND/OR searches. The presence of several stripes indicates an AND combination

while showing two search representations next to each other allows to see documents

that contain either keywords. While our current implementation supports only simple

keyword queries, the concept can easily be extended to more sophisticated queries.

By sliding a finger over the search results, the document under the finger is slightly

enlarged for a simple lens effect and annotated with details. In Figure 7.6, we see Ben
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Figure 7.6: Detail-on-demand is shown for the document under the finger. It shows
that “bse” also found this document (top-left), a document timestamp, title, and sen-
tences that include the search term (white text, right).

looking at details for timestamp and document title, as well as the text surrounding the

one occurrence of the word fda in the document text. Left of the title and sentence in-

formation, Ben can see a summary of search terms that have also found this document,

just bse in this case. The colour is the same as the colour of the search representation,

and stripes, representing the search term. The size of the word is representative of

the number of times this specific search term occurs in the document, reminiscent of

TagClouds (Viégas and Wattenberg, 2008).

When multiple team members synchronously issue searches in the system, the coloured

stripes in the document representations are updated for all searches. The stripes are

persistently linked across all views until a search is removed from the workspace. In our

example, Ana has now begun her own searches. She is looking for political connections,

trying to understand whether the mayor may have been involved in the BSE outbreak.

She wants to see what the mayor and city hall have to say, and so she invokes a search

for luthor, the name of the mayor, and city hall. Ana goes through her city hall list,

finding a document that mentions BSE, Luthor, and city hall. The detail-in-context

information now includes information for collaborative searches (Figure 7.7).

7.3.6 Has someone else issued my search?

As the analysts work, it may be important for them to know that they are currently look-

ing at the same search or at a search a collaborator has previously looked at. Coloured
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Figure 7.7: Different base-coloured stripes show when searches from other team mem-
bers have found the same documents: Ana has search lists for “city hall” and “luthor”.

rectangles under the search term show which analysts have also previously issued this

search (Figure 7.8). A red border around the box indicates whether there is currently

a representation of this search for this team member in the workspace. These four

base colours used here are not included in the search term scales (Figure 7.5) in order

to make them visually separate. In our example, both Ana and Ben follow their own

hypotheses which finally lead them both to issue a search for mad cow. The orange and

blue rectangles under the search term are both highlighted and receive a red border

(Figure 7.8). The coloured stripe on the document itself is also split; this reinforces

that the two analysts are both examining this word.

7.3.7 Has someone considered the same document?

Individual document representations can be dragged up and out of the search results,

where they hover in the workspace (Figure 7.9). The original representation of the

document in the search result list is highlighted by a red border to indicate that the

document currently resides in the workspace. The basic representations of individual

documents contain information on the document title and the publishing date. Stripes

are again used to indicate a set of currently coloured keywords found in the document

(Figure 7.10, left).
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Figure 7.8: Ana and Ben have both searched for “mad cow.” The search box has both
blue and orange marks under it; just above the finger, the stripe that corresponds to
the term is split and shows both their colours.

Figure 7.9: Ana drags a single result up and out of the search box, and so creates a
floating representation of a document. Note that this representation shares the striping
pattern of the search result.

In our scenario, Ana is interested in a specific document about an event at city hall,

she pulls it out of the list (Figure 7.9) and can immediately see by the red border

where the document resides in both the city hall and mad cow searches. When Ben

sees the red indicator for a document in his BSE list, he can reconsider whether he
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had previously pulled the document in the workspace or start a conversation with Ana

about the importance of the document.

Figure 7.10: Minimized document representation (top left) and the full document
reader (right). The reader is opened by resizing the minimized representation (bot-
tom left).

7.3.8 Has someone read the same document?

The minimized representation of a document can be transformed into a full featured

document reader by performing a two-handed resize gesture by pulling the document

apart (Figure 7.10, bottom left). In the full document reader, search words are high-

lighted in their respective colour. If the search has been removed from the workspace,

past search words are still bolded in black. This allows the analyst to see how previous

searches have touched this document.

When a document is opened in the reader, its counterpart in the search representa-

tion receives a slightly darker background to indicate a read access, reminiscent of

document read wear (Hill et al., 1992). The darker the background the more times a

document has been opened. The colour becomes increasingly dark as the document is
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read more; however, the first colour step is distinctive enough that it is immediately

visible whether a document has been read. Further reads are less finely grained to

only reveal whether a document has been read or opened a few or several times as we

expect the exact number to be less important. Figure 7.11 shows an example of two

search representations in which individual documents have been read.

In our example, Ana has been concentrated on organizing her documents for a few

minutes and was only peripherally aware that Ben had opened a document to read. As

the document representations in her set change colour, she remains aware of which

documents she or Ben have read.

Figure 7.11: A darker background for individual documents indicates that a document
has been opened in the document reader. A darker colour indicates repeated document
access.

Information about what documents have been read and by whom is important for the

synthesis of information from parallel analysis work (Robinson, 2008). In addition

to the gray-scale encoding of read access in the document representations, we also

designed a glyph to encode who had previously read a document. Figure 7.12 shows

the basic glyph on the left. To its right are examples of the glyph that shows that both

the orange and blue team member have read the document; their respective triangles

are now opaque. The glyph is oriented to match the locations of the search buttons for

each team member in the workspace; it is rotated appropriately to reflect the viewpoint

of the owner of the object the glyph is embedded in. Figure 7.12b shows the glyph

embedded in the detail-on-demand information of the search box, in Figure 7.12c it is
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(a) Glyph. (b) In detail-on-demand. (c) In document reader. (d) In document title.

Figure 7.12: Icon representing who read a document. Each triangle stands for one
analyst. The icon is embedded in three places. The three examples show documents
that have been read by both the blue and orange analyst.

embedded in the title of the document reader, and in Figure 7.12d it is embedded next

to the title of a document representation floating in the workspace. This last icon is

also rotated towards the orange analyst.

7.3.9 Sharing Results

During their work, analysts may realize that one particular document or search may be

more relevant for one of their collaborators. In this case, the documents and searches

can easily be handed over by passing them to the respective colleague who can then

drop it on his or her search button. This recolours the item and any interaction with it

will now be issued from its new colour. In our case, Ben passes documents related to

the politics at city hall to Ana while she does the same for Ben when she comes across

something relevant to his BSE investigation.

7.3.10 Searches from Documents

We bring the interface full circle by providing functionality for analysts to issue new

searches from the document reader, allowing them to pursue hypotheses through a

chain of documents. On a finger’s touch, the whole word under the finger is selected;

dragging the finger selects a range of letters. In the bottom of the document reader

(Figure 7.10, right) the analyst is then presented with several search options: both

the exact selection and whole words contained in the selection. In the figure, the

analyst has touched the word “Life” and moved his or her finger towards the word
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“Sciences.” The search suggestions for this selection include both the exact match “fe

S”, the contained words “Life Sciences,” or the singular “Life Science.”

7.4 SYSTEM SUMMARY

To elicit initial comments and observations we first demonstrated the tool to a security

specialist at a large technology company, encouraging him to work with it for about

15 minutes. He found that it was easy to query the dataset, and felt that the direct

interaction with the visual results allowed him to easily understand what he had found.

He rapidly suggested a number of contexts in which the tool would be useful, ranging

from time-critical search and analysis scenarios to large dataset exploration. He also

suggested that the tool could be fruitfully adapted to distributed situations.

To get a sense about how our tool supports the visual analytics scenario discussed

throughout the chapter, we conducted informal observations with two pairs of re-

searchers using the aforementioned VAST contest dataset. Participants were seated

each on the long sides of the table, were then given a 15 minute training session,

worked on the task for 40 minutes, and then discussed their experience with us. Both

groups had no difficulty reading or understanding the collaborative brushing and link-

ing features. We saw these features used as intended: for broadening coverage of the

information search, as a highlight for convergence, and as indicators to start an ex-

ploration. Interestingly, different members took advantage of the awareness features

in different ways. One researcher was particularly concerned about common ground,

and so made sure to read all documents that his partner had read. Another issued

a broad set of queries, and then looked for overlapping terms between them. While

the participants reported that they spent time monitoring each others’ progress, they

worked mostly in silence, only speaking occasionally to confirm a finding or discuss a

document. Due to the given timeframe, participants did not solve the complete chal-

lenge but were able to find partial solutions. We used a relatively small surface table

for this task which caused participants to lose overview of documents in the workspace

that may be hidden under an opened document. For the size of table we used, we

recommend no more than two concurrent participants for this task unless reading is

performed on an external display. In terms of scalability, our system is currently most
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optimal for result sets containing up to 50 documents due to the physical display size.

Each document in the dataset can be brushed with up to 24 concurrent searches due

to the chosen colour scales that hold 6 colours per person. We have addressed this

scalability issue by fading out old searches to gray—should more than 6 searches be

added per person—and by adding interactive features that can re-colour an expired

search. Using other visual variables than hue and saturation to distinguish searches

and adding ways to refine and combine queries would be another way to address this

issue.

We expect that our collaborative brushing and linking features could easily be used

on larger surfaces, in multi-display environment (MDEs), or with small modifications

in distributed scenarios. As a next step we conducted a more formal study with the

current tool to gain a richer picture of how pairs would interact with the tool in the

context of a longer data analysis task.

7.5 EVALUATION

In order to understand how small work teams would use Cambiera and its awareness

features, how they would solve the tasks together, and how different coupling styles

would manifest in this work, we2 designed a study that would bring pairs of participants

together to work on a visual analytics task using Cambiera. Motivated by the finding

from Tang et al. (2006) of tool influence on coupling, we designed three experimental

conditions that would vary the collaborative brushing and linking features of Cambiera

(Figure 7.13):

None: Each team member’s interactions with the data are only visible in his or her doc-

uments and search results. Each team member’s searches and documents are

tagged from a distinguishable colour palette. Overlaps between searches from

both partners are not explicitly shown. We would expect to see partners in this

condition work more loosely coupled as they are not specifically made aware

of the overlap between their own and their partner’s actions (Figure 7.13a).

2 The following researchers were involved in designing and running this study: Petra Isenberg,
Danyel Fisher, Meredith Ringel Morris, Kori Inkpen, and Mary Czerwinski. Thus, any use in the
remainder of this chapter refers to this group of people.
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fda
(read 0/5)

bse
(read 0/3)

(a) Condition “None”: Each team
member has a distinct colour.
Search indicators do not over-
lap between both team mem-
bers.

fda
(read 0/5)

(read 0/3)
bse

(b) Condition “Partial”: Team
members do not have a dis-
tinct colour. Search indicators
overlap between both team
members.

fda
(read 0/5)

bse
(read 0/3)

(c) Condition “Full”: Team mem-
bers have a distinct colour.
Search indicators overlap be-
tween both team members.

Figure 7.13: Study conditions vary the types of awareness indicators that participants
receive.

Partial: In this condition, team members share a single colour scale, so that they can-

not explicitly tell which of them has issued a given query. Search overlap is

shown but does not show who issued the search so team members have to rely

on their memory to keep track of this information if it is necessary. In this

condition, we would expect participants to receive awareness clues that would

lead them to work more in a closely coupled fashion. However, we would

expect participants to work carefully around each other’s individual actions

Figure 7.13b.

Full: The base state of Cambiera, as discussed above, each team member is distin-

guished by a base colour; team members can see each others’ searches in their

own search results and see which documents have been read and by whom.

We would expect team members in this condition to work more closely cou-

pled but also easily remain loosely coupled since one’s own actions are easily

distinguishable (Figure 7.13c).

7.5.1 Task

We based our experiment around the VAST 2006 Challenge, “Stegosaurus” (Grinstein

et al., 2006), a visual analytics scenario that entails finding a hidden weapons-smuggling
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plot. Set in the fictional town of Alderwood, Washington, it requires teams to find and

synthesize the results from searching through three hundred newspaper articles, plus

several fact sheets and other articles, one map, four images, and one spread-sheet. The

task begins with an introduction that gives a starting clue and suggests a first document

to read. Buried among the three hundred articles are ten critical documents that are

directly relevant to uncovering the plot. The plot of Stegosaurus hinges on identifying

eleven connections between the people, places, and institutions in the story: the team

must discover information about a terrorist group in South America, a dangerous chem-

ical in Washington, and a smuggling ring that is shipping the chemical from Washington

to South America (see Appendix A.4 for details). Cambiera does not currently support

search of non-textual materials like maps and images. As such, we needed to pick a

subset of the documents to be presented on the tabletop. We preloaded Cambiera with

all of the newspaper and fact sheet articles. We also provided paper print-outs of the

map and other images. Participants, thus, interacted with an archive of approximately

320 digital documents.

7.5.2 Participants

It is extremely difficult to obtain professional intelligence analysts for this sort of re-

search; as with other visual analytics studies (Stasko et al., 2008), we instead recruited

people who were familiar with data analysis. Participants were required to have a

Master’s (or more advanced) degree, and to have self-reported as enjoying solving puz-

zles or solving mysteries. The members of each pair knew each other and had worked

together in some form; subjects included co-workers, friends, family members, and

married couples. We recruited fifteen pairs of participants in our study. Participants

ranged in age from 25–55; ten of the couples were mixed-gender; three were both

women; and two were both male (14 male and 16 female participants in total).

7.5.3 Experimental Procedure

Each pair was assigned to one of the three conditions (None, Partial, Full), for a total of

five pairs in each condition. Participants received a 15 minute tutorial on the various

features of Cambiera using a sample dataset, during which they were encouraged to



154 Chapter 7 Cambiera: Collaborative Visual Analytics

experiment with the features and ask questions freely. They were then introduced

to the “Stegosaurus” problem with an introductory letter explaining the context. The

external experimenter running the study was familiar with the dataset, and so was

able to monitor the teams’ progress. When teams stopped making progress entirely, as

judged by the experimenter—visible by reading and re-reading distracter documents,

or by reporting to be stuck—the experimenter provided assistance. During an assist,

the experimenter did not provide new information, but rather asked the participants to

clarify previous ideas that they had raised. Since our focus was on observing the group’s

collaborative interactions with each other and with the system, and less on performance

outcomes, we wanted to ensure that pairs were able to make progress in the task, and

that they continued working. For this reason, we decided to provide assists to teams

who did not progress in the task. We tried to maintain consistency of assists by using

only one external experimenter, who followed a written protocol. Participants reported

their results verbally at the end of the study. We terminated the experiment when the

team could produce a reasonably coherent story when asked for their hypotheses, and

ended all experiments at one and a half hours. After the study, each members of 12

of the pairs filled out a questionnaire, resulting in 24 questionnaires in total (due to a

technical error, three pairs did not fill out the questionnaire). Next, the experimenter

debriefed the pair to understand how they approached the problem and to get their

feedback on the technology.

7.5.4 Data Analysis

Sessions were video- and audio-recorded; in addition, screenshots at one-minute inter-

vals and event logs were captured with timestamps for interactions with the tabletop.

One experimenter took notes in real time on the group work. Another experimenter

(the author of this dissertation) performed several video coding passes in order to get

a rich understanding of the ways in which groups solved the task. To get an under-

standing for the types of details to code, I first engaged in thorough video coding pass

of one session using an extended video coding tool I implemented (extended from the

version mentioned in Chapter 4 and 6). During the coding I took full time-stamped tran-

scripts of participants verbal communication, noted observations on work style (e. g.,

switches between parallel and joint work), task solving styles (e. g., what type of infor-

mation was looked at and for what reason as well as current level of understanding
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of the problem), use of external material, observable occurrences of awareness feature

use, hypotheses voiced, workspace organization styles, and tool problems. I coded this

video with time-stamped interactions based on several codes extended from the set pre-

sented in Chapter 4. The full list of these initial codes can be found in Appendix A.4.2.

Since coding on this level of granularity took about six hours for 90mins of video data,

we discussed the most interesting findings from this coding and cut down the coding

categories to a more manageable set. I then coded the collaboration styles behavior

based on the code set presented by Tang et al. (2006) and took notes on roles adopted,

how collaborative brushing and linking features were used (for spread or replication),

how external information was used (shared or private notes), what types of group work

breakdowns or conflicts occurred, and how often workspace items were shared.

During the first coding pass it became evident that the code set from Tang et al. (2006)

had to be extended to accommodate the different study situation. Whereas the original

code set was developed for a situation in which participants shared the same represen-

tation, our participants could also work with individual information items. Therefore,

we extended the code set to more clearly distinguish when people shared views of the

data and when they shared the same information items. More details about the ex-

tended code set are included in the results section of this chapter. During the second

coding pass, I took detailed time-stamped notes on when participants switched to dif-

ferent types of collaboration styles using the extended code set with the video coding

tool I implemented. I also took extended notes on which facts and documents teams

found. The code set for the facts and documents is not included here as the dataset

we used is part of a training dataset for intelligence analysts and we had agreed not to

publish the answers.

I also engaged in a coding of the post-session interview based on written transcripts

of participants’ answers. The transcripts that were the basis of this coding were made

by one of the two experimenters running the study. The coding of these transcripts

resulted in higher-level categories of participants answers including: awareness (e. g.,

which information was missing or seen as helpful), work styles (e. g., strategies, roles,

sharing, and collaboration) as well as tool features commented on (e. g., liked and

missing features). The interaction log data was parsed and statistically analyzed by

two other experimenters.
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Together the detailed analysis of the field notes, log files, and screenshots provided

a rich understanding about how teams solved the given task. The most interesting

findings in relation to this dissertation work are presented next.

7.5.5 Findings

The results of our exploratory study showed that the tool and the tabletop collabora-

tive setting allowed participants to approach the problem quickly and effectively. All

participants immediately immersed themselves in the task and made use of the various

features Cambiera offered. In this section, we present more detailed findings on how

participants solved the task, worked with Cambiera, and how participants engaged

with each other.

Task Completion

To find necessary information, groups issued an of average 50 (σ = 14) searches with

42 (σ = 11) distinct search terms. These led the groups to open an average of 90

(σ = 26) text documents in the document reader per session. Of these, the group

opened an average of 58 of them more than once. Eleven of the 15 groups found

all ten critical documents; the remainder missed one or two. Despite finding most of

the critical documents, we observed a wide variance in how well pairs were able to

connect the facts they had found, ranging from making three connections to all eleven

(µ = 7.73,σ = 2.58). Teams also required varying degrees of assistance ranging from

one group that only connected four facts, but had five assists, to a group that made all

eleven connections, with no assists. The average completion time for all experiments

was 72 minutes (σ = 12).

Influence of the Experimental Condition

In reviewing the fifteen pairs, we found that the conditions did not impact how the tool

was used overall. We did not find statistically significant differences for the number of

searches performed, number of documents read, time spent on the task, or numbers of
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documents or searches passed between participants. This was surprising because we

had hypothesized that the different conditions would influence how closely participants

worked and that this would impact how the tool was used. For example in the None con-

dition, participants did not see others’ searches in their own result lists. We, therefore,

expected them to pass documents back and forth more than in the other conditions. In

other conditions, we expected participants to find overlaps more easily and see which

documents others had read, leading to fewer documents passed to the partner. In Fig-

ure 7.14, we illustrate the mean number of instances of documents and searches shared

by teams over the three conditions. A one-way Analysis of Variance (ANOVA) did not

reveal a significant difference between the number of document exchanges or search

exchanges, although the data trended in that direction (F(2,12) = 2.7, p = 0.11 and

F(2, 12)2.5, p = 0.12, respectively).

Measuring success is difficult in complex tasks like the one we tested. We can measure

how many critical documents participants found and how many assists they received

over the time of the trial. However, creating a joint metric out of these factors is not

necessarily meaningful, as different types of assists were given to groups. On average

our experimenter gave two assists per group. Three teams required no assists, found

all critical documents, and connected 10 or 11 facts. These three teams were each in a

different experimental condition. We believe that the complexity of the task and study

situation, as well as individual and group variability, were contributing factors for the

lack of measurable difference in experimental condition.

Despite this lack of measurable influence on tool use, eight of the ten pairs in the

Partial and None condition spontaneously commented that they would have preferred

additional awareness features during our post-session interview. During the debriefing

sessions, eight of the ten pairs in Full and Partial identified this awareness informa-

tion as a substantial benefit of Cambiera. Three teams in Partial and all five teams in

None—that is, pairs that had incomplete or no awareness information—spontaneously

suggested that it would be desirable to “add a feature” to allow the team to see each

other’s searches, and to code them to show who had done the search. In other words,

these pairs expressed a desire for the features provided in condition Full. We note

that participants found ways to work around the lack of awareness information, for

example, by taking on different roles (e. g., one reading, one searching) and by sharing

information verbally. Participants’ qualitative feedback on the usefulness of the features
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Figure 7.14: We did not find statistically significant differences between the average
number of times that documents and search results were explicitly shared between
pairs in the three different experimental conditions.

and their desire to have these features makes awareness support a promising direction

for further investigation.

Observations of Group Work Styles and Strategies

To better understand whether, how, and when participants switched between phases

of parallel (or loosely coupled) and joint (or closely coupled) work, we coded the

coupling styles for each group inspired by the code set by Tang et al. (2006). For

each code, we observed which of the analysis processes from Chapter 4 were common

in each coupling style in order to further analyze how different information analysis

processes manifest in phases of joint and parallel work.

We extended this original code set from Tang et al. (2006) by four codes. In the for-

mulation, distinct codes specify whether the two team members were working on the

same problem or different problems, on the same area or opposite areas of the table,

and whether one team member was passively viewing. In addition, the original set

coded every interaction as loosely or closely coupled. The coding scheme from Tang

et al. (2006) with our modifications, can be found in Table 7.1. Our modifications are

annotated with a (*).
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Coupling Code Description Most Common Analysis
Processes

C DISC (*) Discussion: Conversation about the tool, task
status, or work strategies (Figure 7.15).

Establish Task Strategy,
Discuss Collaboration
Style, Validation

C SPSA Same Problem, Same Area: Both participants
work on the same information artifact on the
table (Figure 7.16).

Browse, Parse, Select,
Operate, Validate

C VE View Engaged: One participant is actively
working with an artifact; the other is actively
viewing, possibly commenting, but not touching
(Figure 7.17).

Parse, Operate, Validate

C SPDA-SI (*) Same Problem Different Area—Same Infor-
mation: Both participants are reading the same
document, on their own sides of the table.

Browse, Select, Parse,
Operate, Validate

C SPDA-SSP (*) Same Problem Different Area—Same Specific
Problem: Both participants are working from
a shared set of documents to solve the same
problem (e. g., search through all found police
reports for a clue about the injured driver).

Browse, Select, Parse,
Operate, Validate

L SPDA-SGP (*) Same Problem Different Area—Same General
Problem: Both participants agreed to find clues
to a common question (e. g., “what happened to
the driver”) but are taking different approaches
and searching for different terms. Private note
taking is common.

Browse, Select, Parse,
Operate

L DP Different Problem: The two team members
work on separate areas of enquiry often taking
notes on their findings.

Parse, Browse, Select,
Operate

L V/D Viewing / Disengaged: One person is working
on the problem; the other is watching passively
or disengaged.

Parse, Browse, Select,
Operate (one person)

Table 7.1: Video codes, adapted from (Tang et al., 2006). (*) indicates a category that
is not in (Tang et al., 2006). In the first column, C indicates that we will refer to this as
a close coupling and L as loose coupling.

Discussion (DISC):

Our first new code, DISC (discussion) focuses on participants’ conversations about the

task or tool. Discussion occurred always in closely coupled collaboration. We observed

four main types of discussions in our study:

1. Discussions about how found facts can be connected and formed into a coherent

story. This type of discussion included analysis processes Discuss Collaboration

Style, Validation, and Establish Task Strategy from Chapter 4 which in this previ-
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Figure 7.15: Example of participants discussing the tool (left) and discussing their
current strategy (right).

ous study were also mostly performed in closely coupled collaboration. Discus-

sions of collaboration styles were typically very brief and mostly evolved fluidly

throughout the task, similar to what we observed in Chapter 4.

2. Discussions about which strategies could or should be applied to find new or

missing facts or prove current hypotheses. In this type of discussion, team mem-

bers further established task strategies, albeit with a focus on tool usage (i. e., how

should the tool be used to find necessary information).

3. Discussions about how the tool should be used or interpreted. This type of discus-

sion involved the Clarify process from Chapter 4. We mostly observed participants

engage in clarifications about the encoding of awareness features.

Figure 7.15 gives an example of two of the three types of discussions we observed in

our study.

Same Problem Same Area (SPSA):

When working on the same problem in the same area of the workspace (SPSA), the two

team members shared the same information item (document or search result list) and

would read a document (Operate code from Chapter 4), use the Browse process to look

through the same search result list, or select a set of documents from a shared search

result list. The reading of a common document was often accompanied by validation of

a question, hypothesis, or interpretation that one team member had previously raised

about the content of the document. Figure 7.16 gives an example of two pairs reading

the same document together.
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Figure 7.16: Example of participants working with the same information in same areas
of the workspace.

Figure 7.17: Example of two pairs where one team member is actively listening to the
other team member without interacting with the workspace.

View Engaged (VE):

During phases in which pairs were View Engaged, one participant would interact with a

workspace artifact, while the other was actively watching or listening. The main type

of view engaged behaviour involved one participant reading a document aloud (the

Operate process from Chapter 4) while the other was actively listening. This was a

commonly observed behaviour when parsing the task sheet. Often, the other person

was listening to a document being read in order to operate on (e. g., understand, ac-

tively connect, interpret) or validate some facts that the person reading the document

had found. Figure 7.17 gives an example of two pairs in a VE phase.

Same Problem Different Area (SPDA):

Our next three codes split the original SPDA (same problem different area) code. Tang

et al. (2006) describe the SPDA code as “two team members working on the same prob-

lem on opposite sides of the table.” In contrast, our participants did not coordinate

their interactions over a full screen shared, spatially fixed, representation but were
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interacting with representations which could be shared, duplicated, and moved. We

found that we needed more degrees of refinement in our scenario, since the original

SPDA code could not precisely cover the more diverse range of information that par-

ticipants worked with in this study. However, differentiating what kind of information

(e. g., same documents, same topics, different topics) can help to inform how closely or

loosely coupled participants worked. Hence, we split the SPDA code in three sub-codes

describing interactions with different types of information on the table surface:

SPDA-SI Same Information: Two team members reading the same document at the

same time but in different areas of the workspace using their own document

readers. Participants were engaged in the Operate process while reading

the document to retrieve new facts or in Validate when checking previously

found information. Participants were also coded as being in SPDA-SI when

they browsed through the same search result set and selected information

from the same result list representation.

SPDA-SSP Same Specific Problem: Both team members are working to solve the same

specific problem. They have previously decided what problem to solve (e. g.,

to find out what happened to the driver involved in a car crash). Activities

involve searching to find a specific document (e. g., a document about a car

crash at a bank) or reading different documents from a common search re-

sult list looking to find a specific piece of information or fact (e. g., reading

obituaries to find out whether a specific person had died). In SPDA-SSP, par-

ticipants typically engaged in the Operate process but also browsed search

results, selected new information to read, parsed the initial task sheet, or

validated a partner’s results.

SPDA-SGP Same General Problem: Both team members are working on the same gen-

eral problem but taking different approaches. For example, both partners

have agreed on finding out whether the Boynton lab is involved in the mys-

tery; one searches for FDA investigations and the other searches for its con-

nections to a BSE outbreak. Similar to SPDA-SGP, participants were mostly

engaged in Operate, Browse, Select, or Parse processes.

We coded SPDA-SI and SPDA-SSP as closely coupled (C in Table 7.1) and SPDA-SGP as

loosely coupled (L in Table 7.1). Visually, all three codes looked similar to Figure 7.18—



7.5 Evaluation 163

Figure 7.18: Example of two participants working on the same problem in different
areas of the workspace. Here, both team members are reading the same document
(SPDA-SI), trying to understand the information contained in relation to their previous
findings.

Figure 7.19: Examples of two participants on different problems (left) and one partici-
pants viewing the other person without actively engaging in the task (right).

an example of the SPDA-SI code. As both participants were working in different areas of

the workspace, the context of what participants were working on and what information

they were looking at was deduced from video and audio coding and from looking at

the time-stamped log files of the pair’s interactions with the workspace.

Different Problem (DP), Viewing (V):

When partners did not agree on a common goal, their interactions were coded as DP

(different problem), for example, when one decided to search for all the farms on the

map to look for clues and the other looked for chemicals with flower smells. When

one partner was not actively listening but watching the partner work, we coded their

interactions as V (viewing). DP and V were coded as “loosely coupled” collaboration.

Figure 7.19 gives an example of both types of work. In DP and V, the working team

member was engaged in any of the processes: Operate, Browse, Select, or Parse.
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Temporal Sequence of Work Phases:

In order to get a better sense of when participants were working more closely or loosely

coupled, we generated sequence graphs of the codes described above. Table 7.2 shows

which work phases—according to the codes above—our participants engaged in, while

Table 7.3 shows the temporal sequence of phases in which participants worked closely

or loosely coupled.

In Table 7.3, we see the wide variance of times in which groups were closely coupled.

Groups spent anywhere from 32% of their time (Group 7) to 92% of their time (Group

1) in close collaboration. The experimental condition did not have an influence on

which coupling styles groups adopted. Overall, we observed a tendency for groups

to work closely coupled, with eleven (of 15) groups spending over half of their time

in closely coupled collaboration. We refer to those eleven groups as closely coupled;

the remaining four groups are loosely coupled. Loosely coupled teams spent a large

amount of their time (43%, on average) trying to answer a common general question

such as “what is the involvement of Boynton laboratories,” working on their own part

of the workspace with separate search results and documents (SPDA-SGP). Closely

coupled groups spent longest working with the same result sets in the SPDA-SSP style

(24%, on average), but also spent an average of 23% of their time in SPDA-SGP. Fre-

quently, this separate work led to groups switching to one of the closely coupled styles

to discuss intermediate results, read documents together, interpret found facts, or of-

fer/ask for help. In addition, our coding revealed that our teams showed high task

engagement, with very little time spent in V (viewing) or D (disengaged) styles.

Closely and loosely coupled groups read documents differently. In closely coupled

groups, team members would often read (operate on) documents aloud (VE), would

rotate an open document towards the other person to allow them to read it together,

or would read a document alone and then summarize the findings for the other person.

In loosely coupled pairs, reading was mostly done in parallel, and when something in-

teresting was found, private notes were taken; Occasionally, the document was passed

to the other person to read for themselves. In these groups, sharing of information was

less often spontaneous, and more often initiated by prompting: one group member

would ask the other, “so what have you found?”
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Group Condition % of Time
Closely
Coupled

Coupling Styles

7 None 32%

5 Partial 33%

8 Partial 39%

3 Full 46%

4 None 50%

6 Full 54%

9 Full 56%

11 Partial 57%

14 Partial 60%

13 None 68%

1 None 69%

12 Full 75%

2 Partial 90%

15 Full 91%

10 None 92%

Table 7.2: Sequence diagrams of closely and loosely coupled phases that pairs engaged
in. Red encodes phases of mostly closely coupled collaboration, while blue encodes
phases of loosely coupled collaboration. Gray indicates the SPDA-SSP code which was
coded as closely coupled. White indicates phases in which groups had stopped working
(e. g., for interaction with the experimenter).

Group Work Strategies and Awareness Features

Watching the groups work, we observed that our participants found ways to work

around the features that were missing in their experimental condition. For example,
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Group Condition % of Time
Closely
Coupled

Coupling Styles

7 None 32%

5 Partial 33%

8 Partial 39%

3 Full 46%

4 None 50%

6 Full 54%

9 Full 56%

11 Partial 57%

14 Partial 60%

13 None 68%

1 None 69%

12 Full 75%

2 Partial 90%

15 Full 91%

10 None 92%

Table 7.3: Sequence diagrams of coupling styles that each pair engaged in. Blue en-
codes phases of loosely coupled collaboration and yellow phases of closely coupled
collaboration. White indicates phases in which groups had stopped working (e. g., for
interaction with the experimenter).

we saw teams passing searches back and forth frequently in the None condition, which

allowed them to see search overlap more easily. Some groups in the Partial and Full

conditions, however, worked in a way that made the search overlap features less effec-

tive. For example, some groups cleaned up their search results right after they were

used, which circumvented the usefulness of the stripes. Other groups searched along

completely different paths which led to infrequent search stripe overlaps. In order to
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illustrate how different strategies impacted the ways that teams worked, and how they

utilized Cambiera, we discuss three different teams’ strategies in detail.

Group 2: Working Closely Together

Group 2 was in the Partial condition, meaning that they did not have distinct indi-

vidual colours. The two participants in this group were close friends and co-workers.

They found all ten critical documents, made all eleven connections with no assists, and

solved the complete task correctly in 70 minutes. Both participants worked closely cou-

pled for 94% of the time. They had a clear work strategy: they searched and browsed

the results in parallel but read interesting articles together, sharing 13 documents. They

were able to rapidly identify connections between facts, and moved through the study

very efficiently. Since these participants worked very closely with frequent communi-

cation throughout, they generally had a very good awareness of what each other were

searching for. Each made sure that their partner read important documents that they

had found, so Cambiera’s awareness features were less critical for this group. As a

result, the pair used query colouring less to track their own searches, and more as a

way of finding documents that looked to be information-rich. In particular, they prefer-

entially read documents that had several stripes (found by several searches), and that

had not been read before.

Group 5: Failing to Combine Knowledge

Group 5 was also in the Partial condition. Both participants were friends, co-workers,

and experienced puzzle solvers. They had coordinated multi-hundred-person puzzle-

solving competitions, and so felt very confident about their ability to solve the mystery.

However, within the 69 minutes of their work they found all critical documents but

only found five connections and required 3 assists. Both participants reported that

they were accustomed to working separately, trying to figure out a puzzle on their own.

As a result, they adopted a loosely coupled work style, working closely coupled only

33% of the time. After reading the initial document together, they each chose a part

of the problem that was of interest to them. As they worked, they would look for

documents that might help their current approach, and periodically mentioned their

thoughts aloud. They spent substantial portions of the task unaware of each others’

work. It was not until the experimenter asked for a status update that they began to
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realize what information they were missing. Table 7.2, middle, illustrates the fact that

Group 5 spent much of the study working separately on different problems (DP), peri-

odically checking in. During the task, the group issued 78 searches; they later reported

that they had gotten lost in the sheer quantity of results they had created. They did

not make visible use of the awareness information that they did have, since they spent

most of the time working on different problems where the search and read overlap was

minimal. After the experiment, they asked for better awareness information that would

let them know who had searched for a term and who had read a document, in order to

be better aware of the difference between their own and their partner’s work.

Group 10: Role Taking

Group 10 was a pair of History graduate students from a nearby university, who had en-

joyed working together on a number of projects in the past. Daphne and Charles were

in the None condition, which meant that search results did not contain information

about which of the partner’s searches found the same documents. The group made

ten of the eleven connections, required no assists, and solved the complete story in

66 minutes. Daphne and Charles chose a working style that allowed them to work

closely together. They overcame the constraints of the None condition by separating

into roles. Daphne would select articles that she found interesting, and pass them to

Charles. Charles would read them in more detail, sometimes opening them to fill half

the screen so that they could read them together. As the study progressed, Daphne

continued to conduct searches; Charles continued to sort and organize results. Charles

would suggest ideas, which Daphne would search for. Their choice of distinct roles

meant that the lack of links in their colours was irrelevant; they had effectively the

same view as a group in the Partial condition.

These very different strategies meant that we were unable to detect a significant re-

lationship between experimental condition and success. Teams found ways to work

around the lack of links, and some teams that were linked disregarded that informa-

tion.
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7.5.6 Discussion

A key finding in our experiment was that while groups were presented with different

variants of Cambiera in the three experimental conditions, this did not have a signifi-

cant influence on performance. Instead, we found that there was substantial individ-

ual variation between teams: different teams approached the problem very differently.

These differences were far more linked to their work styles than the experimental ma-

nipulations we chose. Watching the groups work during the experiment, we observed

that our participants found ways to work around the awareness features that were

missing in their condition. In this way, we share some of the surprise of Tang et al.

(2006), who found that team members would work closely together even in conditions

that were meant to separate them. However, our qualitative data showed that 8 of the

10 teams in the None and Partial conditions requested more awareness features. This

could indicate that having to work around the lack of features was perceived as extra

effort for the participants which could be alleviated by integrating better awareness

indicators into the result visualization.

Cambiera was designed to support a range of coupling styles. Our results also show

that a broad selection of coupling styles were adopted by our participants and that

participants frequently and fluidly switched between these styles. More groups worked

closely coupled than not; the ease of sharing information across the table could ac-

count for this dominance of closely coupled work. In relationship to Chapter 4, we

noticed that the earlier analysis processes could also be identified in this study. We

further found that similar to the earlier study, participants tended engage in certain

analysis processes (browse, parse, operate, select) more commonly in coupling styles

which were coded as loosely coupled, while other processes (discuss collaboration style,

establish task strategy, clarify, and validate) were more common in closely coupled col-

laboration.

7.6 CHAPTER SUMMARY

In this chapter I introduced Cambiera, a system designed to specifically to explore the

notion of awareness indicators in co-located collaborative analysis activities. The prob-

lem addressed with this system was derived from findings of studies in Chapter 4 and
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Chapter 6 which showed that team members would divide up their work with infor-

mation visualizations and specifically liked to select and operate on specific data items

individually. Specifically, during the study on CoCoNutTrix in Chapter 6, participants

asked for better awareness information of what had been worked on and by whom and

about which data items individual team members had already formed a decision. With

Cambiera, we integrated specific awareness support into the visual display of search

result lists. We defined collaborative brushing and linking as an awareness mechanism

which has the goal to inform team members of each others’ work during phases of

parallel work. We note that there are several important differences from interactive

brushing and linking. Unlike interactive brushing and linking, the collaborative form

links views through social information about items being worked on. Also, interactive

brushing and linking can be ephemeral: a team member can select a node on one chart,

and see the highlight propagate to another instantly. In contrast, in an awareness tool,

collaborators may not notice changes instantly; changes may have to be persistent or

propagate slowly. Finally, interactive brushing and linking usually connects distinct vi-

sualizations with the same underlying data whereas collaborative brushing and linking

adds on additional meta information. To help maintain common ground, Cambiera

uses the same type of representation throughout. While it may be possible to use dif-

ferent representations, we have not yet experimented with that.

In our design, we have emphasized persistent colourings in order for team members to

share common ground. In previous sections, we have outlined four different forms of

collaborative brushing and linking:

• search stripes, to help team members see other search terms,

• document read wear to show what documents have been read and by whom,

• red highlights around documents to cue that the document is visible in the work-

space, and

• search boxes which show who has repeated the same search.

Cambiera is designed for a synchronous, co-located surface computing system. While

the concepts of shared awareness information are well known for distributed settings,

co-located tasks may benefit from unobtrusive awareness cues. In a study of 15 pairs

using Cambiera, we modified its collaborative brushing and linking features to try to

understand the influence of these awareness features on group work and the use of



7.6 Chapter Summary 171

the tool. We found that the awareness features did not have a measurable impact on

group work behaviour or success in the task. Instead, we found that the results were

swamped by the wide variety of coupling styles people adopted. Interestingly, however,

pairs did ask for the brushing and linking features when they did not have access to

them. In general, with design refinements, the concept of collaborative brushing and

linking appears to have been partially validated in this research and in particular the

qualitative responses of participants and our observations of people working around the

lack of features in conditions that did not provide them. However, several questions

remain open. First of all, the awareness features of Cambiera may have been more

helpful in certain coupling styles. For example, groups who were more closely coupled

could have been paying closer attention to each others’ work and may have noticed

the subtle awareness clues more easily. This hypothesis may be very difficult to test

in practice as it is hard to force a specific coupling style on a group in a complex and

long task such as ours. Secondly, we found that pairs who were more closely coupled

were more successful at making connections within the data. We look forward to other

studies that can help untangle the complex dependencies between coupling, awareness

features, and success in an analysis. Figure 7.20 gives on final overview of the tool.
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Figure 7.20: Overview of the workspace during an analysis session. Both analysts
have arranged several search boxes and documents in the space related to their current
hypotheses.



CHAPTER 8

CONCLUSIONS

In this dissertation, I have explored issues and challenges in the design of informa-

tion visualization systems for collaborative co-located and synchronous work on shared

large displays. In this chapter, I take a final look at the issues raised in the case stud-

ies and literature analysis performed in the earlier chapters. First, I summarize my

research challenges and contributions towards the addressed research challenges. I

then extend the first set of design considerations derived in Chapter 3 by summariz-

ing the findings from later chapters. I conclude with a discussion of further research

directions in the area of co-located collaborative data analysis work with information

visualizations.

8.1 RESEARCH OBJECTIVES

My work focused on providing a richer picture of the design challenges for collaborative

information visualization systems for large shared displays and synchronous work. In a

group setting, the use of co-located collaborative technology needs to support a process

of social interaction around the data. Ideally, this process helps the group to arrive at a

common understanding of the data through collaborative interpretation, analysis, dis-

cussion, and interaction. This means that by using these tools, groups should be able

to gain more than the simple combination of each team members’ individual insight

from the data by taking advantage of knowledge sharing, interpretation, and discus-

sions around the data. However, in order for team members to arrive at a common

understanding it is necessary to allow them to transition from individual data analysis
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phases to joint data analysis phases in which the data is discussed in more closely cou-

pled collaboration. In information analysis tasks, team members may need to be able

to work on their own sub-projects, in which tentative hypotheses or exploration paths

can be followed and rejected. Desire for private work may be in tension with their

desire to benefit from the team’s shared effort. Therefore, I specifically focused on the

challenges of designing collaborative interfaces that support both individual as well as

joint work practices around data. My goal was to identify the needs and requirements

for transitioning between both work phases in data analysis tasks with the overarching

goal to help the group to more easily arrive at a common understanding of the data.

In context of this research goal, I looked at three main research challenges. The next

section summarizes the progress towards addressing the individual challenges.

8.2 PROGRESS ON THESIS CONTRIBUTIONS

The main objective of this thesis was to provide a richer understanding of how to

best design information visualization systems for co-located collaborative work, with

a focus on the problem of supporting individual as well as joint data analysis phases.

I completed this objective by addressing three research challenges. Next, I provide

summaries on how I addressed each research challenges.

8.2.1 Applicability of Related Work to Collaborative Data Analysis

Challenge 1: We do not have a clear understanding of how related work in CSCW and

Information Visualization areas applies to the specific problem of supporting co-located

data analysis.

I have addressed this research challenge by conducting a large literature analysis (Chap-

ter 3) of work from computer supported cooperative work, information visualization

advice, and empirical work that looks directly at collaborative use of information visu-

alization.

This analysis was the first to summarize a set of design considerations for co-located

collaborative data analysis work for large displays. The design considerations were

grouped into those related to: setting up a collaborative environment (display & input),
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supporting social interaction around data, and designing information visualizations for

co-located collaboration. The studies conducted in Chapters 4, 6, and 7 further con-

firmed earlier work in other task domains or collaborative settings that stated the ten-

dency for team members to switch between closely and loosely coupled work phases

(e. g., Elwart-Keys et al. (1990); Mandviwalla and Olfman (1994); Gutwin and Green-

berg (1998); Tang et al. (2006)). The research studies conducted in Chapter 4 further

partially confirmed earlier work on data analysis processes. In particular, the work

of the Sensemaking (or Knowledge Crystallization) Cycle (Card et al., 1999) showed

to be highly applicable. It predicted some of our findings as to the temporal flexibil-

ity of collaborative data analysis processes. On the other hand, the study contradicts

previous work (Mark and Kobsa, 2005) which supported a more linear process model.

The study conducted in Chapter 6 on CoCoNutTrix confirmed previous work (Tse et al.,

2004) which argued that conflicts of interaction are often successfully resolved socially

without the need to implement specific control policies.

In summary, research on other collaborative contexts (e. g., distributed collaboration),

other collaborative tasks (e. g., collaborative drawing, document editing), as well as

information visualization advice (e. g., the Sensemaking Cycle) for single analysts has

applicability to co-located collaborative data analysis. This dissertation contributes a

richer understanding of which work applies and contributes empirical evidence con-

firming previous research from other work and task domains.

8.2.2 Understanding Collaborative Data Analysis Practices

Challenge 2: We do not well understand the data analysis practices and processes of small

teams. How do they analyze information together and how are information visualizations

used in this context?

I have addressed this research challenge by conducting several studies of co-located

collaborative data analysis. In the first study (Chapter 4), we used paper-based vi-

sualizations to study how individuals and small teams would analyze data unencum-

bered by any specific implementation of a collaborative system. The study revealed

several analysis processes which included different types of data analysis activities

that team members engaged in (Browse, Parse, Discuss Collaboration Style, Establish

Task-Specific Strategy, Clarify, Select, Operate, and Validate). Some of these processes
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were more evident during specific collaboration styles than others. Specifically, Clarify,

Strategize, Discuss Collaboration Style, and Validate were predominantly performed

in joint (closely coupled) work phases with frequent verbal exchange and sharing of

artifacts while activities involving the Select, Operate, Parse, and Browse process were

frequently performed in individual, parallel work with own information items and lim-

ited direct communication. We, thus, saw that participants often performed detailed

work that involved careful scrutiny of the information artifacts in parallel work phases,

while team members more often asked the help or opinion of others when making

plans of how to proceed, clarifying how to read a visualization, or validating interme-

diate or final results. The study of CoCoNutTrix in Chapter 6 further looked at types of

interactions between collaborators over one shared visualization. Again, we observed

team members switching between parallel and joint work phases. Even though partici-

pants had to share the same visualization, their interactions rarely conflicted with one

another. However, as participants did often pick separate parts of the visualization to

work on in parallel, they often lost the overview of what had been worked on by the

group. While the visualization itself could capture (through representation changes)

parts of the teams’ analysis activities, participants requested additional awareness infor-

mation. This need for additional awareness information was further studied in Chap-

ter 7. This final study showed again, the variability in work styles that participants

engaged in. Teams spent between 32% and 92% of their time closely coupled. The

large variability in work styles, coupled with variability in task solving strategies and,

thus, tool use, meant that we did not find significant differences of tool use behaviour

between groups in the different awareness conditions. However, qualitative feedback

from teams without awareness or partial awareness indicators showed the need to em-

bed such features into data representations for co-located collaborative work for this

type of task.

In summary, these three studies provide evidence of the flexibility in which teams en-

gage in complex data analysis tasks with information visualizations. The results from

these studies contribute to our understanding of temporal flexibility in data analysis

processes and activities (Chapter 4) and provide evidence of the variability of closely

and loosely coupled collaboration during these tasks (Chapters 4, 6, and 7). Further,

the results show that this switching is important to support group discussions and vali-

dations, and hence, group knowledge building. Further, the thesis contributes a set of
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design considerations that can help support this flexibility and provides evidence how

well the flexibility was supported in the two studied systems (Chapters 6 and 7).

8.2.3 Designing Collaborative Data Analysis Systems

Challenge 3: We do not know how to design collaborative information visualization sys-

tems for co-located work. In particular, we do now know how we can support team mem-

bers transitioning from parallel to joint work phases.

I addressed this research challenge by presenting three different system designs for co-

located collaborative data analysis. Each had different data characteristics, group sizes,

hardware configurations, or analysis tasks. Based on the initial set of design considera-

tions derived in Chapters 3 and 4, CoTree (Chapter 5) was developed as a first system

that translated these initial guidelines into a co-located collaborative information vi-

sualization system. Specifically, it supports parallel work by providing individual and

unconnected views of the data, mechanisms for flexible workspace organization (in-

cluding view rotations, scaling, and positioning), and flexible temporal work processes.

Collaborators could use these features to rearrange and resize items in the workspace

to transition to more joint work.

With CoCoNutTrix (Chapter 6), we took a different approach, starting from a system

that would support joint work and introducing mechanisms for parallel work. We

retrofitted a social network analysis system (NodeTrix by Henry et al. (2007)) for col-

laborative work. While it included one shared large representation, parallel work was

made possible by introducing synchronous independent inputs, gestural interaction,

and by minimizing global data operations. Team members could synchronously inter-

act with the representations as each data item could be individually operated on, while

still being connected to the remainder of the graph representation.

Finally, Cambiera (Chapter 7) was designed as a new collaborative visual analytics tool

for the analysis of large text document collections. Similar to CoTree and CoCoNut-

Trix, it allowed team members to work in parallel on individual information items and

search result visualizations but in contrast included more direct indications of overlap

between parallel work activities. In Cambiera, search results and individual document



178 Chapter 8 Conclusions

representations are augmented with awareness information to encourage transitioning

to more closely coupled work phases.

The studies of both CoCoNutTrix and Cambiera showed that the respective systems

supported different working styles which justified the design choices made for each

system.

In summary, the dissertation contributes three specific system designs for the support

of co-located data analysis activities. The designs cover a range of different data (hier-

archical, social network, and textual documents), different work environments (a large

two-touch Smart DViT table, a wall display with four independent indirect inputs, and

a small multi-touch table from Microsoft), and different analysis tasks (comparison of

hierarchical data, social network analysis, intelligence analysis). Together, the three

designs contribute to our evolving understanding of how to support the flexible work

styles that are common in collaborative data analysis work.

8.3 THESIS CONTRIBUTIONS

With this thesis I have enriched our understanding of the problems and challenges in

designing information visualizations for co-located collaborative work. Below I sepa-

rate out the main components of my contributions.

8.3.1 Major Contributions

• The first set of design considerations for information visualization systems

in co-located shared screen settings. To the best of my knowledge, the design

considerations derived in this dissertation are the first collection of such consider-

ations for co-located collaborative data analysis with information visualizations.

While such a collection can always be extended and refined through further stud-

ies, this first collection can help to guide interested tool designers towards the

development of their own first prototypes. Furthermore, it can encourage re-

searchers to study the role of their own tools in other collaborative data analysis

scenarios, with new datasets, and different tasks and to extend and refine these

considerations.
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• An analysis of information analysis processes and their common occurrences

in phases of joint and parallel work. This study taught us that, as visualization

tool designers, we should allow for individuals’ unique approaches toward anal-

ysis, and support a more flexible temporal flow of activity. It also taught us that

it may be worthwhile to consider specific support for analysis processes that may

be more commonly performed in closely coupled collaboration with joint infor-

mation artifacts.

• Three specific system designs. Based on three examples, I demonstrate how

co-located collaborative systems can be designed to support group analysis. I

show how both parallel and joint work phases can be supported in these differ-

ent systems and present experimental findings that assess two of the presented

designs. These three examples can serve as inspirational examples to others who

are interested in building their own tools. The study methods used to assess two

of the designs can help to refine our knowledge of how such systems can best be

evaluated.

8.3.2 Minor Contributions

• A definition of collaborative visualization that encompasses many different col-

laborative scenarios around shared visualizations.

• Discussion of design challenges in adapting information visualizations for touch

interaction. Different solutions are offered based on local menus, workspace

menus, and gestural interaction.

• A new tree comparison mechanism based on spatial proximity, allowing any num-

ber of trees to be chained together and compared.

• Discussion of challenges and advice on retrofitting single-user information visual-

ization tools for collaborative work.

• Introduction of the ‘collaborative brushing and linking’ concept as an awareness

technique for collaborative work with information visualizations.

• Design of a visual analytics system for the analysis of large text document collec-

tions on a multi-touch surface.
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8.4 EXTENDING THE DESIGN GUIDELINES

The research presented in Chapters 4–7 extended the first set of design considerations

derived from related literature in Chapter 3. Specifically in the context of co-located

collaborative work, the following additional design considerations emerged.

Support for Temporal Flexibility of Analysis Processes: In all three studies conducted for

this dissertation, groups’ flexible work styles were evident. Chapter 4 showed that

people in a team flexibly transition between types of data analysis processes, and

that support of temporal flexibility of work processes is necessary for groups to

work together fluidly. In order for team members to be able to work in parallel,

systems need to be relatively unrestrictive in their parallel support of different

data analysis activities. It is insufficient to support just one analysis activity at a

time, since different team members employ different strategies to analysis, often

in parallel, and pairs frequently shift activities depending on the current stage of

the task or depending on recent findings that were made. For example, global

operations which hinder every team member from continuing their parallel work

may have to be minimized. Operations such as search for data and operations

on the data may support people’s work styles better when they can be performed

in parallel (i. e., when data sources are accessible and browseable, no matter if

important data calculations are being performed in parallel).

Support for Data Analysis in Closely and Loosely Coupled Collaboration: The studies de-

scribed in Chapters 4, 6, and 7 provided evidence that teams frequently switch

between joint and parallel work phases in collaborative data analysis tasks. Data

analysis and, in particular exploratory analysis, often requires team members to

react to emerging findings or hypotheses, to re-assess their analysis strategies and

previous solutions, and to communicate, validate, and clarify information to vary-

ing degrees with the other team members. Hence, the support of a wide variety

of work styles and collaboration strategies is a challenge that must be addressed

for the design of collaborative data analysis tools. With the study from Chapter 4

we found that specific data analysis processes were more common during joint

and some were more common during parallel work phases. It is worthwhile to

consider how best to support the activities, for example, of validation and clar-

ification in the context of closely coupled work in which team members often
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shared their current results and compared information they had already found.

Similarly, browsing and operating on the data was often a parallel activity, which

may benefit from features which support personalization and individual activity.

Integration of Awareness Indicators: The study on CoCoNutTrix in Chapter 6 pointed

out that team members were often concentrated on detailed work in separate

areas of the workspace and could not adequately keep track of which information

others had worked on and made decisions about. Even though team members

shared the same screen, the nature of the task and the size of the group made

it difficult to keep track of who had worked on what and which decisions had

been made about the data. The need to support awareness for co-located data

analysis work was further studied with Cambiera in Chapter 7. In this study, we

saw that team members highly valued the available awareness information or

missed it when it was not present. Further, we noted that teams that spent more

time closely coupled were better able to make connections in the data and join

their individual findings. This finding suggests that collaborative data analysis

work may benefit from an integration of additional awareness information in

co-located settings.

Design for Collaborative Reasoning and Sensemaking: While the systems presented in

this thesis allowed for collaborative data analysis and exploration, they only in-

cluded limited support for collaborative reasoning and sensemaking. For exam-

ple, annotating mechanisms can not only provide information on what has been

worked on but also support reasoning about the data and collaborative sensemak-

ing. Other possible features could include ways to extract relevant information

for the group to consider next (based on what has already been explored), and

ways to automatically summarize semantic information (that the group has con-

sidered). In the spirit of supporting closely coupled collaboration, such features

may focus on the collaborative aspect of the work and compare and connect

findings and facts other team members have extracted. This need for additional

sensemaking and reasoning features was particularly evident in the Cambiera

study (Chapter 7) where large amounts of information had to be connected and

interpreted.

With these extensions, Table 3.1 from Chapter 3 can be extended as seen in Table 8.1
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Consideration Aspects to Consider

Collaborative Environment

Display size Socially appropriate work space size per person, establish-
ment of private, group, and storage spaces

Display configura-
tion

Accommodation of group’s current work practices, tasks, and
goals

Input Type Impact of input type on possible interactions
Resolution Input and display resolution

Supporting Social Interaction

Communication Explicit data referencing across different representational and
viewing contexts, e. g., annotation; implicit awareness cues
of changes to the data across different representational and
viewing contexts, support clarification, validation, data and
strategy discussions with shared artifacts

Coordination When using individual data views, location and rotation as
a coordination and communication tool, sharing of visual-
izations and views, multiple synchronous interactions with
shared representations, temporal flexibility of analysis pro-
cesses, analysis processes within different collaboration
styles, awareness of analysis activities and histories to en-
courage joint work

Designing Information Visualizations

Representation Personal preferences, multiple representation types, aware-
ness support, appropriateness of representation for work en-
vironment and social interaction, integrated reasoning and
sensemaking support

Presentation Arrangement of data items for group access, providing copies
of the same data, accommodation of input methods, compen-
sations for display resolution

View Interpretability of data from multiple viewpoints and orienta-
tions

Interaction Interactive response rates despite simultaneous interaction,
collaborative interaction histories, conflict reduction arising
from global changes to data or view, fluid interaction, tem-
poral flexibility of analysis processes, support operation,
selection, browsing, and parsing as parallel activities

Table 8.1: Summary of the design considerations for co-located collaborative data anal-
ysis environments derived in this dissertation. In bold are the extensions to the table
presented in Chapter 3.
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8.5 GENERALIZABILITY

In the studies conducted as part of this dissertation I have mostly taken a qualitative

approach looking at people’s interactions with one another and with physical or digi-

tal items in their workspace. Every study of this type is influenced by the observer’s

interests, their perspective, biases, training, and knowledge which in turn may change

and evolve during the course of an analysis (Jordan and Henderson, 1995; Corbin and

Strauss, 2008). In order to support my initial observations I captured each analysis

session and went over the video and audio data several times. To further support my

observations, I then used systematic data analysis approaches as outlined for each study

(see Chapter 4, 6, and 7). These systematic approaches involved coding the data (e. g.,

using affinity diagrams) and counting of observations from the video- and audio-logs.

In addition, I made use of a variety of available data sources for each study beyond the

observations: interview data (and their transcripts), data logs (Chapter 6 and 7), and

questionnaires to triangulate my findings. By looking at these different sources of data

I proceeded inductively and generated rich descriptions about general patterns found.

These descriptions formed the basis for more general observations about how people

work with information visualizations in groups, how their work patterns do not follow

rigorous temporal orders, and how several features such as awareness indicators or

support for specific work styles in closely or loosely coupled collaboration can further

support this work. These more general observations should not be seen as prescriptive

statements but rather as considerations for application to other work contexts, datasets,

groups, or analysis tasks. While my initial finding from Chapter 4 about the temporal

and work style dynamics of groups was further confirmed in the studies of Chapter 6

and 7, I cannot generalize them to all other data analysis scenarios. However, there

are now three examples of this type of behavior and this may indicate that this type

of behavior may extend to other (likely not all) data analysis scenarios. Similarly, I

drew conclusions about the successfulness of the CoCoNutTrix and Cambiera tool for

supporting the collaborative analysis tasks asked of the participants in the studies. Both

tools successfully supported collaborative data analysis work in that most of the teams

reached satisfying solutions and no major conflicts arose (see (Gutwin and Greenberg,

2000)). Of course, it is difficult to separate out the tool from the people who use it.

The successful completion of the tasks was not only due to the tool and its design but

certainly also due to factors such as teams’ motivations and abilities to work with one
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another and with the tool. Studies such as the ones presented in this thesis serve to pro-

vide rich descriptions of the scenario under study and help to identify different types

of behaviors and interactions. Further studies in this research area will help to see in

which other scenarios the findings from this thesis apply or do not apply.

8.6 FUTURE RESEARCH

This research raises many new questions for collaborative data analysis. While I have

given several considerations for the design of collaborative information visualizations,

I looked at only a small subset of possible collaborative work scenarios, hardware, data,

and tasks. There are many interesting open research directions in this domain and the

following sections summarize just a few of them.

8.6.1 Study of Data Analysis Practices in Context

While post-implementation evaluation of information visualizations are becoming more

common, as of yet, there are few empirically-based information visualization papers

that focus on describing theories of visual information analysis practices in a real world

context. However, having a clearer understanding of how people work together collab-

oratively with information visualizations, what type of information they share, in which

format, and which activities rely on the input of several team members can be used to

hypothesize about how people will interact with technology, to inform interface design,

and to guide evaluation of created designs (Isenberg et al., 2008b).

For example, an observational study conducted to inform design and evaluation was

performed by Tang and Carpendale (Tang and Carpendale, 2007). Their study looked

at the information exchange required during nurses’ shift changes. The results provided

a decomposition of the types of information being exchanged in various media, and po-

tential avenues for computer support including information visualizations. In scenarios

such as these, it is important to understand current practices, as new information vi-

sualizations may offer improved efficiencies in some measured criteria, but their net

impact on patient care needs to considered. For example, if a highly time-efficient digi-

tal system all but eliminates temporal overlap during hand-overs then some important
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verbal exchanges could be lost. Hence, studying collaborative practices with informa-

tion visualizations is important to inform our understanding of when and where these

systems can be used, which specific types of tasks they should best support, and how

these systems can be integrated into the daily work routines of the individual team

members.

8.6.2 Evaluation of Collaborative Data Anlaysis

The success of an information visualization is strongly connected to the mental model

that a person can make about the data by viewing the visualization (Spence, 2007b).

However, our understanding of how this mental model formation works is still very

limited and we know even less about how a group forms an understanding or insight

of a dataset. In my opinion, the goal of using a collaborative information visualization

system should be to provide the group with an environment that enriches their data

analysis activities beyond what they could come up with as separate individuals. A

collaborative data analysis scenario should, therefore, support group insight formation.

However, as already hinted at in Chapter 6, measuring group insight (or even individ-

ual insight as pointed out by Plaisant (2004) and Saraiya et al. (2005)) is difficult to

measure. Work by Stahl (2006) closely relates to this problem. His book describes

research on group cognition in the computer supported collaborative learning domain.

Stahl argues for attempting to capture the richness of the learning phenomenon by

observing the collaboration taking place. He mentions that collaborative knowledge

building is a complex and subtle process that cannot adequately be captured with sta-

tistical methods and I believe the same to be true for collaborative building of insight.

Similar to the problems inherent in evaluating single-user information visualizations,

we do not have a clear idea about how to evaluate the possible additional insights or

the group learning effect that can be achieved by using such a system. How do you

capture group insight or learning? Is the group even important for the construction of

insight in the individual? If so, how do we find out? (Stahl, 2006) proposes to observe

team members’ conversations about data discoveries. Where do they agree or disagree,

augment or confirm each other? The advantage of observing collaborative formation

of insight vs. insight made by a single person is that group members may have to make

these processes visible to each other and may also make it visible to the observer. As

more collaborative systems are built for co-located data analysis, different methods may
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have to be tried to evaluate of these systems. In this thesis, we have taken a mostly ob-

servational, qualitative approach to analysis which let us gain a richer understanding of

the overall use of a tool and the behaviours of team members during the collaboration.

This worked well for CoCoNutTrix (Chapter 6) to describe how different components

of collaborative work were evident, but did not work well when trying to find specific

differences for tool features in the Cambiera study (Chapter 7). Here, team members’

individual approaches were too varying to measure any significant differences, yet, pro-

viding evidence of the usefulness of such features may be more convincing to promote

their adoption in practice. How to address the variability in group work styles, collab-

orative tasks, data, and scenarios for any controlled experiment of collaborative data

analysis tools is a challenge that is yet to be addressed.

8.6.3 Extending the Work to Other Contexts

In this thesis, only a limited subset of possible collaborative data analysis scenarios

were addressed. Natural extensions include the following:

Small vs. Large Teams: Data sets nowadays are becoming increasingly large and com-

plex. It is possible that the analysis of such data requires larger teams than the

2–4 team members that were considered here.

Joint Synchronous and Asynchronous Settings: Collaborative work is not always started

from a planned or arranged meeting time but often happens ad-hoc. Imagine a

scenario where two people are working on a shared large display in an office on

a data analysis task. It may be quite frequent that another person happens to no-

tice the collaboration by overhearing a comment that he/she is interested in. In

cases such as this one, it may be beneficial if a collaborative system could support

a person entering a collaboration at a later point in time, show which data items

team members had already looked at, see what they have already edited or made

decisions about, and which are left open to decide without interrupting the work

flow of those already in a collaboration.

Privacy in Co-located Collaborative Analysis: Certain datasets that benefit from collab-

orative analysis may include data that only subsets of the team members have

access rights to. The access could restrict who can see information or who can
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modify information. How to present and include information with restricted ac-

cess rights to a collaborative data analysis team is an open question. Possible

solutions could include anonymizing or abstracting the restricted information or

displaying pointers to further information. This further information could be re-

layed to external screens (notebooks, PDAs, etc.) where it could be viewed or

interacted with in private.

Communication vs. Data Analysis: In this dissertation, I have merely looked at the is-

sues regarding data analysis on shared displays. However, information visualiza-

tions are increasingly used to communicate findings or concepts to larger groups

of people. What requirements arise for the design of information visualizations to

guide learning and understanding the information is an open research question.

8.7 CONCLUSION

With this dissertation, I have moved our understanding of the design requirements and

challenges for co-located collaborative data analysis another step forward. Over the

course of this dissertation I have seen increasing interest in using large shared displays

for data analysis work (about 90 participants joined the 2009 VisWeek workshop, that

I co-organized). In particular, the first design considerations derived here will help

practitioners to start their own designs and to extend and refine the considerations to

other domains, tasks, and scenarios.
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APPENDIX A

A.1 CHAPTER 4: MATERIALS FOR INFORMATION ANALYSIS

PROCESSES STUDY

A.1.1 Informed Consent Form

The consent form on the following pages was handed to participants before the begin-

ning of the study.



 

Department of Computer Science 

 

Consent Form 

 
Evaluation of Collaborative Information Analysis 

Investigators: Petra Neumann, Anthony Tang, Sheelagh Carpendale 

This consent form, a copy of which has been given to you, is only part of the process of informed 

consent. It should give you the basic idea of what the research is about and what your 

participation will involve. If you would like more detail about something mentioned here, or 

information not included here, please ask. Please take the time to read this form carefully and to 

understand any accompanying information. 

Description of Research Project: 

We are currently investigating how people solve tasks that involve the exploration of data in 

graphical form, such as charts or graphs. We would like to learn how people solve these tasks to 

better meet the needs of people who have to do these tasks regularly. For this purpose, we will 

give you information in the form of graphs and tasks to solve with this information. The study 

will involve two different scenarios and graphs for these scenarios. 

We will be observing your actions, as well as videotaping you during the course of the session. 

Videotaping is mainly done because it is difficult for us to observe everything that might be 

important for our research. We often discover things by watching the videos later that we have 

overlooked during your session. This videotaping, however, is optional and you can still 

participate if you choose not to be videotaped. You will also be asked to complete a post-session 

questionnaire to further our investigation. It is estimated that your involvement will take 

approximately one hour, and you will be offered remuneration for your time. 

There are no known harms associated with your participation in this research. No information that 

discloses your identity will be released or published without your specific consent to disclosure. 

However, you may request your name to be cited in cases where we use your comments in a 

publication based on the study. All data received from this study will be stored in a locked cabinet 

and such information that will be stored on a computer will only be accessible through the use of 

a password. All data will be stored for a period of time no longer than five years. Information will 

be carefully disposed of (shredding for hard copies and deleting for electronic copies) when this 

investigation is complete. 

You will be able to withdraw from this study at any point. If this occurs, any data collected up to 

that point about you will be discarded. You are also able to refuse to answer whatever questions 

you prefer to omit. 

Informed Consent: Your signature on this form indicates that you have understood to your 

satisfaction the information regarding participation in this research project and agree to 

participate as a participant. In no way does this waive your legal rights nor release the 

investigators, sponsors, or involved institutions from their legal professional responsibilities. You 

are free to not answer specific items or questions in interviews or on questionnaires. You are free 

to withdraw from the study at any time without penalty. Your continued participation should be 

as informed as your initial consent, so you should feel free to ask for clarification or new 



information throughout your participation. If you have further questions concerning matters 

related to this research, contact: 

Petra Neumann, Department of Computer Science, University of Calgary 

Phone: (403) 210-9499, pneumann@cpsc.ucalgary.ca 

Sheelagh Carpendale, Department of Computer Science, University of Calgary 

Phone: (403) 220-6055, sheelagh@cpsc.ucalgary.ca 

Anthony Tang, Department of Electrical and Computer Engineering, University of 

British Columbia 

Phone: (604) 822-4583, tonyt@ece.ubc.ca 

If you have any questions not satisfactorily answered by the primary researchers concerning your participation in this 

project, you may contact Bonnie Scherrer in the Research Services Office, University of Calgary at (403) 220-

3782; email bonnie.scherrer@ucalgary.ca. 

 

       Circle One     

I grant permission to be audio taped: Yes: ___ No: ___ 

I grant permission to be videotaped: Yes: ___ No: ___ 

I grant permission to have anonymized video 

or still images of me used in a publication: Yes: ___ No: ___ 

 

I grant permission to be quoted anonymously in a publication: Yes: ___ No: ___ 

 

 

 

_______________________________________ ___________________________ 

Participant’s Name (please print legibly)   Participant Signature  

 

_______________________________________ ____________________________ 

Investigator/Witness     Date 

 

A copy of this consent form will be given to you to keep for your records if you request it. This 

research has the ethical approval of the Department of Computer Science and the University of 

Calgary. 
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A.1.2 Questionnaire

The questionnaire on the following pages was handed to participants after completing

the study tasks. Most relevant results from the questionnaire are discussed in Chap-

ter 4.



Instructions: Please respond to all of the items listed below.  

1 

1) Were the types of graphs used in the study familiar to you?   Yes ;   No 
 

If not, which ones were unfamiliar?    
 

  

 
; 

  

 
; 

 
; 

 

 
; 

 
; 

 
; 

 
 
2) How often do you analyze data similarly to how you analyzed it in the study (e.g. for school or work)? 

 
1 2 3 4 5 

Daily Weekly            Monthly Yearly  Never   

 
What type of data do you analyze? ______________________________________________________ 
 
__________________________________________________________________________________ 
 
Do you analyze this data alone or together with others? ______________________________________ 
 
__________________________________________________________________________________ 

 
3) Is there anything that could have helped you to better solve the tasks given?  

 
       __________________________________________________________________________________ 
 
       __________________________________________________________________________________ 
 
4) How closely did you work with your partner(s) during the study (circle one)? 
 

1 2 3 4 5 6 7 

We worked 
together all 

the time 

  We worked 
both together 
and indepen-
dently half of 

the time 

  We worked 
independently 

all the time 

 
Comments: ____________________________________________________________________ 
 

5) How closely did you monitor the work of your partner(s) during the study (circle one)? 
 

1 2 3 4 5 6 7 

I was fully 
aware of my 

partner(s) 
activities 

  I was (not) 
aware of what 

my partner 
was doing half 

of the time 

  I had no idea 
what my 

partner(s) 
were doing 

 
Comments: _________________________________________________________________________ 

 
6) Did you ever divide up a task?:   Yes ,  No   

 
       If so, which questions did you divide up? 

• Cereal Scenario: 1 ,  2 , 3 , 4  
 

• Behaviour/Situation Scenario: 1 , 2 , 3 , 4 , 5 , 6  
 
       How did you divide up the task? 
 

__________________________________________________________________________________ 



Instructions: Please respond to all of the items listed below.  

2 

 
        Why did you divide the task(s)? 

 
__________________________________________________________________________________ 

 
 
7) Did the group work effectively as a team on the tasks (circle one)? 
 

1 2 3 4 5 6 7 

The group 
work was very 

effective 

  The group 
was neither 
effective nor 
ineffective 

  The group 
work was very 

ineffective 

 
Why (not):__________________________________________________________________________ 

 
8) How much do did you contribute to solve the tasks (circle one)? 
 

1 2 3 4 5 6 7 

I contributed 
the most to 
solving the 

tasks 

  I contributed 
equally to 
solving the 

tasks 

  I contributed 
the least to 
solving the 

tasks 

 
Why (not):__________________________________________________________________________ 

 
9) How satisfied are you with your work in the team to solve Scenario 1 (Cereal) (circle one)? 
 

1 2 3 4 5 6 7 

Very satisfied   Neither 
satisfied nor 
dissatisfied 

  Very 
dissatisfied 

 
Why (not):__________________________________________________________________________ 
 
 

10) How satisfied are you with your work in the team to solve Scenario 2 (Situations/Behaviours)? 
 

1 2 3 4 5 6 7 

Very satisfied   Neither 
satisfied nor 
dissatisfied 

  Very 
dissatisfied 

 
Why (not): _________________________________________________________________________ 

 
 
11) Can you think of anything that could have helped to solve the tasks better as a group? 
 

__________________________________________________________________________________ 
 
__________________________________________________________________________________ 
 

12) What is your age? _________________ 
 
13) What is your gender?   [    ]  Male      [    ]  Female 
 
14) Are you currently a student?  Yes;   No 
 

 If yes, what is your major and minor? 
 

       _____________________________________________________________________________ 
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A.1.3 Task Materials

Cereal Scenario

The following task instructions were given to participants:

Scenario:

As part of an effort to improve the marketing of its breakfast options, a consumer

packaged goods company polled 880 people, noting their age, gender, and whether or

not they have an active lifestyle (based upon whether they exercise at least twice a

week). Each participant then tasted 3 breakfast foods and was asked which one they

liked best. The company produced a number of charts of the data that have been given

to you for analysis. You received:

• Charts on the demographics of the participants

• Charts on the preferred breakfast options for different types of participants

Tasks:

1. The manager of the company wants to know what the characteristics of the par-

ticipants were. He does not like numbers. Please give a short and very general

description of the characteristics of the participants according to age, gender, and

lifestyle. (For example: “There are more x than y”, “most people are . . . ”, “few

people are. . . ”).

2. The company wants to increase advertising for its products to groups that already

like a particular breakfast option. Currently they are unsure what kinds of people

prefer which breakfast option. Please make a recommendation to the company

on who each breakfast option should be advertised to.

3. Make a good estimate if more females prefer oatmeal than active people prefer

cereal?

4. Do more inactive people prefer oatmeal than people over 60? Do you think there

might be a relationship between the lifestyle and age in terms of preference for

oatmeal?
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Please come to a consensus about the answers to each task and present the results to

us once you have completed the task.

Figure A.1 shows the data material for this task.

Behaviour Scenario

The following task instructions were given to participants:

Scenario:

52 students were asked to rate the appropriateness of 15 behaviours in 15 different

situations. Appropriateness was rated on a 10-point scale ranging from 0 = “extremely

appropriate” to 9 = “extremely inappropriate”. Your role is to analyze their responses.

Specifically you were given:

• Charts that relate the behaviours and their appropriateness in various situations,

both as scatter plots and bar charts.

• Two overview charts.

Tasks:

1. Find at least two different pairs of behaviours that have similar ratings in at least

three different situations.

2. Choose three situations and describe behaviours most appropriate for that situa-

tion according to the graphs.

3. Find two situations that have at least five behaviours with similar ratings.

4. Is it more appropriate to argue or belch in a park?

5. Where did people think it was most appropriate to laugh?

6. What behaviour in which situation was most inappropriate? What behaviour in

which situation was most appropriate?



A.1 Chapter 4: Materials for Information Analysis Processes Study 217

Figure A.1: Study Material for Cereal Scenario.
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Please come to a consensus about answers to each task and present those results once

you have completed every task.

Figure A.2 shows the data material for this task.
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Argue:

Argue:

Belch:

Belch:

Cry:

Cry:

Eat:

Eat:

Fight:

Fight:

Jump:

Jump:

Kiss:

Kiss:

Laugh:

Laugh:

Mumble:

Mumble:

Read:

Read:

Run:

Run:

Shout:

Shout:

Sleep:

Sleep:

Talk:

Talk:

Write:

Write:

Figure A.2: Study Material for Behaviour Scenario.
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Singles Pairs Triples Average

Parse 3.83 1.93 2.13 2.63
Operate 11.89 8.23 12.93 11.02

Select 3.62 3.43 4.06 3.70
Strategy 0.00 1.70 1.90 1.20

Clarify 0.43 0.51 0.98 0.64
Browse 1.16 0.49 0.46 0.70

Validate 0.04 1.28 3.14 1.49
Collab 0.00 0.09 0.30 0.13

Idle 0.03 0.07 0.25 0.12

Table A.1: Average time spent per analysis process.

A.1.4 Additional Analysis Results

Table A.1 shows the average time (in minutes) spent for both scenarios per identified

analysis process in the study.

Figure A.3–A.8 show temporal sequence of processes used in each study group. Each

bar stands for the temporal sequence of one participant per study group. The following

legend was used to encode the processes:

Browse Select Operate Parse Clarify Strategy Collab Validate Idle

0:0 0:5 0:10 0:15 0:20 0:25 0:30 0:35

 1  2  3  4  5  6

0:0 0:5 0:10

 1  2  3  4  6

0:0 0:5 0:10 0:15

 1  2  3  4  5 6

0:0 0:5 0:10 0:15 0:20

 1  2  3  4  5  6

Individual 1

Individual 2

Individual 3

Individual 4

time (min)

task

Figure A.3: Process sequences for individuals in the Behaviour Scenario.
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0:0 0:5 0:10 0:15 0:20 0:25

 1  2  3  4

0:0 0:5 0:10

 1  2  3  4

0:0 0:5

 1  2  3  4

0:0 0:5 0:10 0:15 0:20 0:25 0:30

 1  2  3  4

time (min)

task

Individual 1

Individual 2

Individual 3

Individual 4

Figure A.4: Process sequences for individuals in the Cereal Scenario.
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0:0 0:5 0:10 0:15

 1  2  3  4  5  6

0:0 0:5 0:10 0:15

 1  2  3  4  5  6

0:0 0:5 0:10 0:15

 1  2  3  4  6

0:0 0:5 0:10 0:15

 1  2  3  4  6

0:0 0:5 0:10 0:15

 1  5  4  3 6 3 6  3  2  1

0:0 0:5 0:10 0:15

 1  5  4  3 6 3 6  3  2  1

Pair 2

Pair 3

time (min)

task

Pair 4

Figure A.5: Process sequences for pairs in the Behaviour Scenario. One pair did not
consent to being videotaped and, hence, process sequences could not be collected.
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0:0 0:5 0:10 0:15

 1  2  3  4
0:0 0:5 0:10 0:15

 1  2  3  4

0:0 0:5 0:10 0:15 0:20 0:25 0:30

 1  3  4  2
0:0 0:5 0:10 0:15 0:20 0:25 0:30

 1

0:0 0:5 0:10 0:15

 1  2  3  4
0:0 0:5 0:10 0:15

 1  2  3  4

Pair 2

time (min)

task

Pair 3

Pair 4

Figure A.6: Process sequences for pairs in the Cereal Scenario. One pair did not consent
to being videotaped and, hence, process sequences could not be collected.
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Triple 4

Figure A.7: Process sequences for triples in the Behaviour Scenario.
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Figure A.8: Process sequences for triples in the Cereal Scenario.
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A.2 CHAPTER 5: IMPLEMENTATION DETAILS

CoTree is implemented using the Large Display Framework as discussed by Isenberg

et al. (2006a). It is based on OpenGL and C++ code. In this section, I discuss the tree

layouts components added to the framework as part of this project.

In order to improve rendering efficiency in the program, the tree layouts in CoTree are

pre-calculated and stored once the first view of the layout is created. When a view

of the particular tree layout is created in the interface, the pre-calculated layouts are

accessed and mapped to the specific size and aspect ratio of the visualization plane on

which the layout is rendered. Once a pre-calculated layout is drawn, it is stored in an

OpenGL display list. If the aspect ratio of a visualization plane changes upon resize, the

display list is recreated but the layout does not have to be recalculated. The details are

discussed next for both the dendrogram and the radial space filling layout. Most of my

code was adapted and integrated within a sequence of libraries by Matthew Tobiasz

as well as extensions to the Large Display Framework (Innovations in Visualization

Laboratory, 2009). The libraries and layouts are discussed in more detail in Tobiasz’

MSc thesis (Tobiasz, 2010).

A.2.1 Dendrogram Layout

When pre-calculating the dendrogram layout, the x-coordinate of each node is stored

within a 0–1 range, 0 for the leftmost node and 1 for the rightmost node. These x-

coordinates can be easily mapped to the respective size of the visualization plane once

the OpenGL display list is created. Listing A.1 shows the pseudocode for calculating

this layout.

A.2.2 Space-Filling Radial Tree Layout

When pre-calculating the space-filling radial tree layout, I stored two radial coordinates

per node. Its beginning angle and its end angle. The inside and outside radius of

each node depends on the node’s level and can be assigned during the generation

of the OpenGL display list when the maximum radius is known. Listing A.2 shows
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Dendrogram Layout Pseudocode ()
{
//ordered l i s t of l eave s
L i s t<Nodes> l e a f L i s t = getAl lLeafsFromTree () ;
// space between l e a f nodes
double l e a f O f f s e t = 1.0 / ( l e a f t L i s t . Count − 1.0) ;

//Next , the node p o s i t i o n s are ass igned i n s i d e a post order t r e e t r a v e r s a l
pos tOrderTreeTraversa l ( root ) ;

//Method to c a l c u l a t e the x p o s i t i o n f o r each node .
//Note tha t no y p o s i t i o n needs to be ass igned here .
//The y p o s i t i o n of the node depends on i t s l e v e l or l e a f s t a tu s ,
// i t i s t h e r e f o r e ass igned during d i s p l a y l i s t generat ion .
pos tOrderTreeTraversa l (Node n) {

for ( in t i = 0; n . getChi ldCount ; ++n) {
pos tOrderTreeTraversa l (n . ge tChi ldAt ( i ) ) ;
}

i f (n . i s L e a f ) {
in t l e a f P o s i t i o n = g e t P o s i t i o n I n L e a f L i s t (n , l e a f L i s t ) ;
n . X = l e a f P o s i t i o n ∗ l e a f O f f s e t ;

}
else {

double l e f t C h i l d X = n . ge tXPos i t ionOfLe f tMos tCh i ld () ;
double r i gh tCh i ldX = n . getXPos i t ionOfRightMostChi ld () ;
n . X = ( r i gh tCh i ldX − l e f t C h i l d X ) ∗ 0.5 + l e f t C h i l d X ;

}
}
}

Listing A.1: Pre-calculation of the dendrogram layout.

code to calculate the angles for the nodes. In order to draw the cushion effect on

the individual nodes, I turned on lighting and assigned a normal to each vertex of the

node. Listing A.3 shows how the cushion effect can be achieved by turning the normals

slightly away from the upright direction.
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//Hashtables mapping node IDs to angles
Hashtable<int , double> s t a r t A n g l e s = new L i s t<double>() ;
Hashtable<int , double> endAngles = new L i s t<double>() ;

Ca l cu la teAng le s (Node n) {
//go through a l l nodes in pre−order t r a v e r s a l
i f (node . i sRoot () ) {

s t a r t A n g l e s . i n s e r t (n . ID , 0 . 0 ) ;
endAngles . i n s e r t (n . ID ,360 .0) ;

}
else {
// get the index of the node among i t s s i b l i n g s
in t ch i ldNr = n . ge tS ib l i ng Index () ;
in t parentDegree = parent . getDegree () ;
in t parent Id = n . getParent () . ge t Id () ;
double s ta r tAng le , endAngle ;

// as s i gn the s t a r t i n g angle
i f ( ch i ldNr == 0) {

s t a r t = beginningAngles [ parent Id ] ;
}
else {

in t nex tO lde s tS i b l i ng I d = parent . ge tCh i ld ( ch i ldNr − 1) . ge t Id () ;
s t a r t = endAngles [ nex tO lde s tS i b l i ng I d ] ;

}

// as s i gn the ending angle
end = endAngles [ parent Id ] ;

i f ( ch i ldNr != ( parentDegree − 1) ) {

// c a l c u l a t e the end angle based on a node weight
// f o r example , to make a l l c h i l d nodes the same s i z e :
double angleRange = end − beginningAngles [ parent Id ] ;
// s imply d iv ide the angle range of the parent by the number of i t s

ch i l d r en
double ch i ldAng le = angleRange / parent . getDegree () ;
end = s t a r t + ch i ldAng le ;

}
beginningAngles . i n s e r t (n . getID , s t a r t ) ;
endAngles . i n s e r t (n . getID , end) ;

}

for ( in t i = 0; i < n . getDegree () ; ++i ) {
c a l cu l a t eA ng l e s (n . ge tChi ldAt ( i ) ) ;

}
}

Listing A.2: Pre-calculation of the radial space filling layout (pseudocode).
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void G L U t i l i t i e s : : f i l l C i r c l e A r c C u s h i o n G L ( double radiusOuter ,
double rad ius Inner ,
double s ta r tAng le ,
double endAngle ,
double s t e p s i z e ) {

in t s tepsPerArc = ( in t ) (0 .5 + ( endAngle − s t a r t A n g l e ) / s t e p s i z e ) ;
i f ( s tepsPerArc < 1) s tepsPerArc = 1;
double angle = s t a r t A n g l e ;
double angleIncrement = ( endAngle − s t a r t A n g l e ) / ( double ) s tepsPerArc ;
double s h i f t V e c t o r F a c t o r = 1 .0 ;
double sh i f tVec to rFac to r Inc r emen t = −2.0 / s tepsPerArc ;

g lBegin (GL_TRIANGLE_STRIP) ;
for ( in t i = 0; i <= s tepsPerArc ; ++i ) {

double s ine = s i n ( angle ) ;
double cos ine = cos ( angle ) ;

// normal vec to r s h i f t
double cub i cFac to r = s h i f t V e c t o r F a c t o r ∗

s h i f t V e c t o r F a c t o r ∗ s h i f t V e c t o r F a c t o r ∗ 1 .5 ;
double x S h i f t = −s ine ∗ cub i cFac to r ;
double y S h i f t = cos ine ∗ cub i cFac to r ;
// outer normal vec to r
Vector v ( cos ine + xSh i f t , s ine + ySh i f t , 2 . 7 f ) ;
v . normalize () ;

glNormal3f ( v . x , v . y , v . z ) ;
g lVertex2d ( cos ine ∗ radiusOuter , s ine ∗ radiusOuter ) ;

Vector v_ inner ( xSh i f t , ySh i f t , 1 . 0 f ) ;
v_ inner . normalize () ;
glNormal3f ( v_ inner . x , v_ inner . y , v_ inner . z ) ;
g lVertex2d ( cos ine ∗ rad ius Inner , s ine ∗ rad ius Inner ) ;
angle += angleIncrement ;
s h i f t V e c t o r F a c t o r += sh i f tVec to rFac to r Inc r emen t ;

}
glEnd () ;

}

Listing A.3: Nodes drawn with a cushion effect (C++ and OpenGL code).
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public c lass MultiMouseEvent extends MouseEvent {

private in t mouseId = 0;

public MultiMouseEvent ( in t mouseId , Component source , in t id , long when ,
in t modi f iers , in t x , in t y , in t xAbs , in t yAbs , in t c l i ckCount ,

boolean popupTrigger , in t button ) {
super ( source , id , when , modi f iers , x , y , xAbs , yAbs , c l i ckCount ,

popupTrigger , button ) ;
th i s . mouseId = mouseId ;

}

public in t getMouseId () {
return mouseId ;

}

public void setMouseId ( in t mouseId ) {
th i s . mouseId = mouseId ;

}
}

Listing A.4: A simple extension to a standard MouseEvent class to allow input ids to
be captured per mouse.

A.3 CHAPTER 6: IMPLEMENTATION AND STUDY DETAILS

A.3.1 Implementation Details

This section includes brief sample code for the mouse event modifications made to

retrofit NodeTrix. Listing A.4 shows a simple extension of a standard Java MouseEvent-

class to allow input IDs to be captured per event. These IDs were used in all classes

that reacted to mouse input. The MouseWheelEvent class was similarly retrofit. List-

ing A.5 and A.6 show two examples of modifications to code required for handling the

selection of information items through picking and lasso techniques.
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MouseReleased ( MultiMouseEvent e ) {
// i d e n t i f y which mice has f i r e d the event
In t ege r mouseId = getMouseId ( e ) ;

// t h i s example i s f o r a l e f t c l i c k
i f ( ( e . ge tModi f i e r sEx ()&InputEvent .BUTTON1_DOWN_MASK) != 0) {
//Find out what item was c l i c k e d on
Item item = getItemPickedOn ( e . getX () , e . getY () ) ;
In t ege r i temId = new I n t ege r ( item . ge t Id () ) ;

//Find out i f someone e l s e a l ready c l i c k e d on i t
// pickedItems i s a hashtab le mapping mouseIDs to itemIDs
boolean contained = pickedItems . conta insVa lue ( i temId ) ;
// E i the r way add the item to the l i s t of th ings tha t are c l i c k e d on
pickedItems . put ( mouseId , i temId ) ;

i f ( contained ) {
mouseIdColumn . setExtend ( itemId , −1) ;
// to get the invo lved mice
Vector<In teger> mouseIds = getMiceOnItem ( aggregatedItemPicked ,

i temId ) ;
// check f o r mouse c o n f l i c t s i f you want
i f ( mouseIds . s i z e () > 1) {

c on f l i c tO cc u r r ed ( M u l t i I n p u t C o n f l i c t . MATRIX_MULTITOUCH, mouseIds ,
" Matrix " , i temId ) ;

}
}

}

Listing A.5: An example showing how picking was modified to allow for multiple
concurrent inputs.
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LassoReleased ( MultiMouseEvent e ) {
//on each mouse move and drag , the coord ina te s of the mouse t ra ck are

s to red in a separa te d a t a s t r u c t u r e per mouse .
Polygon l a s s o = node t r i xV i s . getMouseTrack ( mouseId ) ;

// check which o b j e c t s the l a s s o enc lo se s
A r r a y L i s t s e l e c t i o n s = new A r r a y L i s t ( ) ;
s e l e c t i o n s = node t r i xV i s . p i c k A l l ( la s so , s e l e c t i o n s ) ;

// s in ce i t i s p o s s i b l e tha t someone could be dragging a l a s s o around a
node tha t i s c u r r e n t l y being picked by someone e l s e we can check f o r

a c o n f l i c t here
I n t A r r a y L i s t subItems = new I n t A r r a y L i s t ( ) ;
for ( in t i=0; i<s e l e c t i o n s . s i z e () ; i++){

// f o r each o b j e c t in the l a s s o check i f i t ’ s being dragged c u r r e n t l y
Item item = ( Item ) s e l e c t i o n s . get ( i ) ;
subItems . add( item . ge t Id () ) ;
// i s there a c o n f l i c t ?
i f ( i temsPicked . conta insVa lue ( item . ge t Id () ) ) {
//yes , there i s

// prepare and send a c o n f l i c t event or do something about i t
c on f l i c tO cc u r r e d ( M u l t i I n p u t C o n f l i c t . LASSO_TOUCHEDNODE_INTERSECTION

, mouseIds , " Lasso around picked node " , item . ge t Id () ) ;
}

}
}

Listing A.6: Supporting multiple mice may introduce problems of multiple concurrent
selections. This is one example how our code was modified to deal with multiple and
concurrent lasso and node selection.
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A.3.2 Materials for the CoCoNutrix Study

Informed Consent Form

The consent form on the following pages was handed to participants before the begin-

ning of the study.



 
 

Department of Computer Science 

Consent Form 

 
Title of Investigation: Interfaces for organizing and sharing information 

Investigators: Sheelagh Carpendale, Petra Isenberg, Anastasia Bezerianos, Nathalie Henry, Jean-Daniel 

Fekete 

 

This consent form, a copy of which has been given to you, is only part of the process of informed consent. 

It should give you the basic idea of what the research is about and what your participation will involve. If 

you would like more detail about something mentioned here, or information not included here, please ask. 

Please take the time to read this form carefully and to understand any accompanying information. 

 

Description of Research Project: 
We are currently investigating how software can support interactions between people as they organize and 

share information. To this end, you will be asked to use a tool we call “CoCoNutrix” which is a system 

for co-located sharing and organization of information shown in a social network. You will be shown 

different interaction techniques that offer a variety of support for organizing and sharing this information. 

This may involve such tasks as moving objects to different locations, passing digital objects between 

collaborators, and organizing digital objects for shared access and analysis. We will be observing and 

programmatically capturing your actions, as well as videotaping you during the course of the session. 

This videotaping is optional and you can still participate if you choose not to be videotaped. You will also 

be asked to complete a pre-session questionnaire to further our investigation. It is estimated that your 

involvement will take approximately one hour, and you will be remunerated for your time. This research 

is being conducted collaboratively with two researchers at the University of Calgary, two researchers at 

Université Paris-Sud, Orsay, France, and one researcher at NICTA, Sydney, Australia (see below). The 

data analysis will take place in Calgary. There are no known harms associated with your participation in 

this research. No information that discloses your identity will be released or published without your 

specific consent to disclosure. All data received from this study will be stored in a locked cabinet and 

such information that will be stored on a computer will only be accessible through the use of a password. 

All data will be stored for a period of time no longer than five years. Information will be carefully 

disposed of (shredding for hard copies and deleting for electronic copies) when this investigation is 

complete. You will be able to withdraw from this study at any point. If this occurs, any data collected up 

to that point about you will be discarded. You are also able to refuse to answer whatever questions you 

prefer to omit. 

 
Informed Consent: Your signature on this form indicates that you have understood to your satisfaction 

the information regarding participation in this research project and agree to participate as a participant. In 

no way does this waive your legal rights nor release the investigators, sponsors, or involved institutions 

from their legal professional responsibilities. You are free to not answer specific items or questions in 

interviews or on questionnaires. You are free to withdraw from the study at any time without penalty. 

Your continued participation should be as informed as your initial consent, so you should feel free to ask 

for clarification or new information throughout your participation. If you have further questions 

concerning matters related to this research, contact: 

 



Sheelagh Carpendale, Department of Computer Science, University of Calgary 

Phone: (403) 220-6055, sheelagh@cpsc.ucalgary.ca 

 

Petra Isenberg, Department of Computer Science, University of Calgary 

Phone: (403) 210-9499, pneumann@cpsc.ucalgary.ca  

  

Anastasia Bezerianos, National ICT Australia (NICTA), Sydney, Australia 

Phone: +61 2 8374 5569, a.bezerianos@nicta.com.au 

 

Nathalie Henry, LRI, Université Paris-Sud, Orsay Cedex 

Phone: +33 16915 3486, Nathalie.henry@lri.fr 

 

Jean-Daniel Fekete, INRIA, Université Paris-Sud, Orsay Cedex 

Phone:  +33 1 69 15 64 94, Jean-Daniel.Fekete@inria.fr 

 

Informed Consent: Your signature on this form indicates that you have understood to your satisfaction 

the information regarding participation in this research project and agree to participate as a participant. In 

no way does this waive your legal rights nor release the investigators, sponsors, or involved institutions 

from their legal professional responsibilities. You are free to not answer specific items or questions in 

interviews or on questionnaires. You are free to withdraw from the study at any time without penalty. 

Your continued participation should be as informed as your initial consent, so you should feel free to ask 

for clarification or new information throughout your participation.  

 

If you have any concerns about the way you’ve been treated as a participant, please contact Bonnie 

Scherrer in the Research Services Office, University of Calgary at (403) 220-3782; email 

bonnie.scherrer@ucalgary.ca. 

 

I grant permission to be audio taped: Yes: ___ No: ___ 

I grant permission to be videotaped: Yes: ___ No: ___ 

I grant permission to have anonymized video 

or still images of me used in a publication: Yes: ___ No: ___ 

I grant permission to be quoted anonymously in a publication: Yes: ___ No: ___ 

 

 

_______________________________________ ___________________________ 

Participant     Date 

 

_______________________________________ ____________________________ 

Investigator/Witness (optional)   Date 

 

A copy of this consent form will be given to you to keep for your records if you request it. This research 

has the ethical approval of the Department of Computer Science and the University of Calgary. 
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Questionnaire

The questionnaire on the following pages was handed to participants before completing

the study tasks. Most relevant data from this questionnaire is presented in Chapter 6.



Questionnaire   (For experimenter: Participant Code _________) 

Thank you for taking part in our study. Please fill out the following questionnaire as accurately as 

possible. If you have any questions or concerns do not hesitate to ask the experimenter. 

 

1. Age:  ____ 

 

2. Sex:    M          F  

 
3. Handedness:    Left       Right     Ambidextrous  

 

4. How often do you use a computer? 

 

Several hours 

per day 

At least once 

per day 

At least once 

per week 

At least once 

per month 

Almost never 

1 2 3 4 5 

 

5. How would you rate your familiarity with using large displays? 

 

Extremely 

familiar 

Very familiar Familiar Somewhat 

familiar 

Not familiar at all 

1 2 3 4 5 

 

Please elaborate: 

(e.g. I use a projector once a week for our meeting and present slides from my laptop, we use a digital 

whiteboard in our class and I often write on it) 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

 

6. How would you rate your familiarity (working and social) with other members of your group?   

   

Extremely 

familiar 

Very familiar Familiar Somewhat 

familiar 

Not familiar at all 

1 2 3 4 5 

 

Please elaborate: (e.g. I work with Joe every day, I go for lunch with Jill once a week, but I've never 

met John before today) 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

 

7. How often do you work closely with others? 

 

Almost always At least once 

daily 

At least once a 

week 

At least once a 

month 

Almost never 

1 2 3 4 5 

 

 

 

 



8. How do you mostly work with others? 

 
    Face to face ;   over the phone/Skype ;    via email ;     using cvs/svn ;    

 

    Other _______________        

 

Please elaborate: (e.g. I am a mathematician and I prove theorems together all the time in my office, I 

call my editor at least once a week to discuss the layout of the magazine, …) 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

  

 

9. How would you rate your knowledge of the data you are analyzing today? 

 

Expert Very 

knowledgable 

Knowledgable Passing 

knowledge 

No knowledge 

1 2 3 4 5 

 

 

Please elaborate: (e.g. I know a lot of people in the dataset and their connections because…) 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________  

 

10. How would you rate your experience with node/link diagrams? 

 

Expert Very 

knowledgable 

Knowledgable Passing 

knowledge 

No knowledge 

1 2 3 4 5 

 

Please elaborate: (e.g. in university I use node/link graphs to see protein connections, I sometimes see 

them in articles) 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

 

11. How would you rate your experience with social network representations? 

 

Expert Very 

knowledgable 

Knowledgable Passing 

knowledge 

No knowledge 

1 2 3 4 5 

 

Please elaborate: (e.g. I am a social analysts and have done statistical analysis of social networks, I am 

on Facebook and I have create a "friends wheel" to see my social network) 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 

__________________________________________________________________________________ 
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Possible Interview Questions

These questions will not be asked of every participant or group. They are intended

to encourage participants to explain how they experienced the collaboration with Co-

CoNutTrix. Other questions may be asked based on responses from the participants.

Content

1. Can you explain to us your findings and the communities you created?

2. Did you notice anything else about people/nodes besides who they co- authored

with?

3. Did you base your decisions on prior knowledge, or just the graph co-authorship

information?

4. Can you elaborate on the nature of communities you found (cliques vs crosses)?

Where there situations that did not fit these categories and how did you deal with

them?

5. Do you feel happy with the matrices/communities or believe you could have done

better given more time, or with better knowledge of the domain?

6. Did you learn something from the task?

7. What outside information (not part of the graph) would/did you find useful to

have? (ex. resources such as google)

Collaboration

1. Would you have preferred to do the task alone?

2. If not, would you have preferred to have your own personal representation and

discuss things with partners?

3. Did you feel someone drove the process more than others?

4. Did you assume different roles? (including assigning someone as they main in-

teractor)
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5. Did you have any conflict during the collaboration, both in terms of communica-

tion and resources? (then ask for explicit conflict examples)

6. Would you have liked item ownership/locking and if so in which situations?

Awareness, history, etc

1. Did you at any point loose awareness of what other people were doing? Would

you have liked more information? (ex. areas where people collaborative, high-

lighting links leaving actors)

2. Was the undo mechanism sufficient for your task? (or would you have wanted a

per-person, or per-item undo)

3. Was it easy to remember what decisions you made, was there any confusion?

4. Did you need to keep a history of your process? (Shameless leading to history,

if need history per person, global, etc. Also how to present it: incorporated on

layout level using say halos, snapshots, etc).

5. Did you need any other type of annotation? (Annotation of actions -summaries-

from the system, todo tags, free annotations) Should the annotations be persis-

tent?

Process

1. Describe your strategy to complete the task. Did you give up on any strategies

during the task?

2. If you were asked to do the same thing again would you follow the same strategy?

(Both in terms of experience, but also if issues like speed delays arise during trial)

3. Did at some point let go of the mouse and just watched? Why? Did you still want

to interact during that time?

4. When you created a community, did you revisit it often? (Would you have liked

to mark it as done?)
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Display space

1. Were you comfortable with the way you were sitting?

2. Where you compelled to interact with areas of the display right in front of you?

(especially edge people)

3. Was there enough room for you to complete your task? If not what would you

have preferred to have? (ex. shrinking, fisheyes, flipcharts)

Other feedback

1. What more needs to change between given people one mice and highlighted

cursors and actions.

Affinity Diagram Categories

Data from interviews and observations were organized into one of the following cate-

gories:

• General group characteristics

• Process of creating communities

• Process of working together

• Criterion for creating groups

• How would they do the task again

• Things learnt from the dataset

• Patterns identified in the data

• Strategies used when people couldn’t be placed

• Interesting observation

• Obvious advantages of NodeTrix to support group

• Comments on how changes in the global view affect or could affect group work

• Comments on individual views
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• Happy with result

• Happy with level of knowledge

• Would have preferred to do task alone

• Perceived roles in group

• Perceived conflicts by participants

• Observed conflicts

• Comments on undo

• Data revisitation

• Awareness comments

• Comments on collaboration space

• Features requested

A.4 CHAPTER 7: MATERIALS FOR THE CAMBIERA STUDY

The evaluation was conducted as part of an internship at Microsoft Research, Redmond,

WA, USA. Ethical guidelines of the host institution applied. Participants were informed

of their rights verbally and no written consent form was collected.

A.4.1 Questionnaire

The questionnaire on the following pages was handed to twelve of the fifteen pairs

participating in the Cambiera study. Due to a technical error, three pairs did not receive

the questionnaire.



DATE:        NAME:  

 

 “I was aware of what my partner was working on” 

 Strongly Agree    Agree    Undecided    Disagree   
 

 Strongly 
Disagree 

 “I believe that my partner knew what I was working on” 

 Strongly Agree    Agree    Undecided    Disagree   
 

 Strongly 
Disagree 

How often did your partner have important information that would have helped you, but you 

didn’t find out about it? 

 Very often  Often  Sometimes  Once in a while 
 

 Never 

How frequently did you pay attention to your partner’s work? 

 Very frequently  Frequently  Occasionally  Rarely  Never 
 

How often did you work on the same question as your partner? 

 Very often  Often  Sometimes  Once in a 
while 

 Never 

 

How frequently did you look for the same information as your partner? 

 Very frequently  Frequently  Occasionally  Rarely  Never 
 

How often did you look across the table to see what your partner was doing? 

 Very often  Often  Sometimes  Once in a 
while 

 Never 

 

How frequently did you learn about what your partner was doing from your search results? 

 Very frequently  Frequently  Occasionally  Rarely  Never 
 

  



 

DATE:        NAME:  

 

Roughly, out of 100% of your time: 

How did you learn about what your partner was doing? 

They told me        (____ %) 

I asked them        (____ %) 

We did it together      (____ %) 

I looked at their searches    (____ %) 

I looked at their documents   (____ %) 

I looked at my own search results  (____ %) 

I gave my partner information by: 

Telling them         (____ %) 

Passing them searches      (____ %) 

Suggesting searches       (____ %) 

Suggesting articles       (____ %) 

Passing them or showing them articles (____ %) 

I worked… 

  Alone, researching my own question  ( ___ %) 

  Alone, researching a shared question   ( ___ %) 

  Together, with my partner     ( ___ %) 
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A.4.2 Initial Coding Categories

Table A.2 shows the coding categories I used for coding the first video. It became

evident that it was impractical to follow such a rigorous coding theme and the codes

were reduced to the list discussed in ??.

A.4.3 Group Task Successfulness

Table A.3 gives an overview of how many assists each group required, how many facts

they connected and how many critical documents were found. Unfortunately, a re-

quirement of using this specific dataset was not to publish the solutions to the task.

Hence, the specific facts and documents that were coded cannot be included here but

are available upon request.

A.4.4 Temporal Occurrence of Processes Per Group

Table A.4 shows time in seconds spent per collaboration style by each of the groups as

coded in the second coding pass. Table 7.2 reflects these timings.
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Code Description
Reading Reading a document
Parse Parsing the task description or external material (like the

map) or their own notes
Browse a Search Browsing all the searches in the workspace or through

one particular search by running fingers across
Organize Organizing the workspace by moving documents around

and aligning them
Discuss Doc Discussing the contents of a particular document
Discuss Search Discussion the results of a particular search
Share Fact Sharing of a fact from a doc, requires the other person to

send feedback
Combine Results Explicit sharing by both partners of their individual re-

sults in order to combine them into the current set of
group findings

Mumble Mumbling about what one is doing without paying atten-
tion whether the other person sends feedback

Pass Doc Passing a doc to the other person
Pass Search Passing a search to the other person
Strategy Discussing a strategy to solve the task (e.g. let’s build a

network diagram, let’s look for x or y)
Data Question Questions about the data (e.g. what does x mean)
Tool Question Question about how to use the tool
Hypothesize Stating a hypothesis about what is going on, this is differ-

ent from sharing a fact
Keyboard Search Issuing a search from the keyboard
Doc Search Issuing a search from a document
Checkpoint Hitting a checkpoint
Vis Awareness Showing clear signs of making use of the awareness fea-

tures built into Cambiera
Lack Awareness Showing lack of awareness of what other person is doing

or what is going on
Note Taking Taking notes on external paper
Assist Partner Helping the partner do something (e.g. if they don’t

know how to open a doc or highlight a word)
Tool Problem A problem with the tool occurred, participants clearly

don’t know how to use/do something
Assist Experimenter The experimenter intervenes and does something
Idle I don’t know what the person is doing or s/he isn’t doing

anything but watching or listening

Table A.2: Full code set used for the initial coding of one particular session.
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Group Condition Assists Facts Connected Critical Docs Found

1 None 3 11 10
2 Partial 0 11 10
3 Full 3 5 8
4 None 2 8 10
5 Partial 3 5 10
6 Full 2 3 10
7 None 2 7 10
8 Partial 5 4 8
9 Full 3 7 10

10 None 0 10 10
11 Partial 4 10 10
12 Full 0 10 10
13 None 2 7 10
14 Partial 1 9 9
15 Full 0 9 9

Table A.3: For each group this table lists how many assists it received, how many facts
were connected, and how many critical documents the group found.
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