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Abstract

It is common for small groups of people to gather around visual displays of infor-

mation to discuss or interpret the information to form decisions. Groups can share

the task load of exploring large and complex datasets and can share various interpre-

tations of a dataset when working together. However, tools to support synchronous

collaboration between several co-located people in their data analysis are still rela-

tively scarce. Traditionally, information visualization tools have been designed from

a single-user perspective. Research on collaborative data analysis has just recently re-

ceived increased research attention and primarily distributed data analysis tools have

been developed.

The design of digital systems for co-located synchronous collaboration around infor-

mation visualizations poses challenges that have not been considered in single-user

information visualization systems. In information visualization, it is not yet under-

stood (1) how people collaboratively work with visual representations of data and

which methods they use to solve information analysis tasks as a team, and (2) how

work on other co-located collaborative activities (e. g. collaborative photo sorting,

document editing, games) applies to the specific problem of collaborative data anal-

ysis. There are also only few examples of co-located collaborative data analysis soft-

ware (e. g. VERNIER et al. (2002)) and few descriptions of collaborative data analysis

practices in real-world environments from which to draw advice on how to design

collaborative information visualization systems.

The research goal of this dissertation is to inform the design of information visu-

alization tools to support co-located collaborative data analysis and to further our

understanding of how people work together over information displays. In this pro-

posal, I describe more specifically the research challenges I intend to address during

my dissertation and present how my past work relates to these.
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1 Introduction

Humans have been creating visualizations for thousands of years. Examples range

from early maps, scientific drawings, or data plots to the interactive digital represen-

tations of large information spaces that we create today. We collect more information

through our visual sense than through all other senses combined (WARE, 2000) and it

is not surprising that many disciplines rely on visual representations of data to make

a discovery or to communicate a discovery in a dataset.

By additionally providing data representations in a manipulable medium, varying

parameter spaces can be interactively explored. The research field of information vi-

sualization is concerned with the creation of such interactive visual representations

of abstract, nonphysically-based data. The goal is to help in making discoveries in a

dataset, forming decisions based on insight gained from analyzing a dataset, explain-

ing a phenomenon based on an insight, or to help in predicting future trends (CARD

et al., 1999; WARE, 2000). This stands in contrast to the definition of scientific visu-

alization which has essentially the same goal but largely operates on physically-based

data, including techniques such as volume rendering or flow visualization.

So far, research in information visualization has largely focused on supporting a sin-

gle person in doing data analysis. However, the process of analyzing and interpreting

information and making decisions based on an analysis is often collaborative in na-

ture, in particular, when important decisions are based on large and complex data

sets (CHUAH and ROTH, 2003). The notion of data analysis as a social process raises

interesting research issues for supporting collaboration around interactive digital in-

formation visualizations. In this dissertation proposal, I present a research plan to

investigate several of the challenges of providing computational support for collabo-

rative data analysis using information visualization.

1.1 Research Motivation

Humans have considerable experience collaborating in shared work environments

and collaborative data analysis also often occurs in co-located settings. Decisions and

conclusions are rarely based on the analysis by a single person (THOMAS and COOK,

2005). Team members can offer different perspectives and expertise that together

can improve the quality of decisions or solutions. For example, imagine a team of
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medical practitioners meeting to discuss a patient’s medical record (Figure 1a), a team

of scientists coming together to argue about the results of their latest experiments

(Figure 1b), or a team of business analysts negotiating next year’s budget based on

the analysis of a financial data set (Figure 1c).

(a) Two nurses dis-
cussing a medical
visualization.

(b) A group of astronomy stu-
dents analyzing visual rep-
resentations from their lat-
est experiment.

(c) A team meeting to discuss a
business plan.

Figure 1 – Examples of co-located collaborative data analysis over information displays.

Finding ways to augment this type of collaborative data analysis with the power of

digital information visualizations may lead to more effective decision making. Most

techniques so far have been designed to support this effective decision making for a

single analyst by providing new techniques to conquer problems such as those of dis-

playing increasingly large and multi-dimensional data sets (e. g. JERDING and STASKO

(1995); MUNZNER et al. (2003)), finding appropriate visual support for relational in-

formation like hierarchies, clusters, temporal trends, outliers (e. g. ROBERTSON et al.

(1991); VAN WIJK and VAN SELOW (1999)), or providing appropriate interaction tech-

niques to explore complex datasets (e. g. CARPENDALE and MONTAGNESE (2001); VAN

WIJK and NUIJ (2003)).

Often neglected in this research is the notion that data analysis is also commonly a

social experience. With large data sets, the task load of exploring the data could be

shared among several individuals on a team (THOMAS and COOK, 2005). Datasets

on which decision and discoveries are based may also be susceptible to a variety of

interpretations, in which case experts may discuss and negotiate their interpretations

of the data.

Motivated by these benefits of collaborative data analysis, this dissertation investi-

gates the challenges of supporting data analysis for co-located, synchronous work en-

vironments.



7

1.2 Research Scope

The topic of this dissertation lies at the intersection of two research fields as seen in

Figure 2: Information Visualization (InfoVis) and Computer Supported Cooperative

Work (CSCW).

Figure 2 – Research Context.

In the field of information visualization, researchers have been working towards de-

veloping new visual representations, presentation and interaction techniques to am-

plify human cognition for different types of datasets, tasks, and analysis scenarios

(CARD et al., 1999; CHEN, 2006; SPENCE, 2007). Research from the field of informa-

tion visualization informs the topics of this dissertation by providing information on

how individuals work with and perceive visual data representations, how they per-

form data analysis, and how to design interactive information visualization systems

to support these work processes.

The field of CSCW (DIX et al., 1998, Ch. 13) is concerned with the challenges of

designing software for multiple users to work as a group and how to understand

the effect of deployed software on their work processes. Within CSCW, in particular

the work on co-located groupware has a high applicability to the research problems of

how to support co-located collaborative data analysis. Techniques that describe mech-

anisms to support coordination of activities in the workspace, awareness of group

member’s activities, access to and transfer of items in the workspace, for example,

can be applied to the design of collaborative systems for co-located data analysis

(ISENBERG and CARPENDALE, 2007).

Since an exhaustive investigation into all aspects of co-located collaborative informa-

tion visualization is beyond the scope of this thesis and because there is little research

in information visualization on the support of co-located data analysis, this research

starts with the fundamentals in the research area based on specific data sets and tasks.
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In particular, I conduct one of the first investigations into the difference between indi-

vidual and collaborative data analysis processes, develop the initial set of guidelines

for the design of co-located collaborative information visualization, and investigate

the collaboration practices around information visualization in a scientific research

laboratory in which a digital system for co-located data analysis will be deployed.

2 Foundations

In this section, I discuss research areas relevant to my dissertation. I start by reviewing

research in information visualization on analysis processes and guidelines for design

and introduce research within CSCW on co-located synchronous collaboration. Then,

I describe the small body of research on collaborative data analysis and visualization

systems in the synchronous and asynchronous distributed domains.

2.1 Information Visualization

To understand collaborative analysis processes, we need to first look at how individ-

uals work with information visualizations. Several researchers have outlined frame-

works that describe the use of information visualizations to solve problems. These

frameworks share the common characteristic of modeling a person’s involvement

in the visualization process as an iterative sequence of components; however, each

model is unique in terms of its focus, and how it abstracts the process. Several re-

searchers describe analysis practices through operations in digital information visu-

alization systems (e. g. (SHNEIDERMAN, 1996; CHI and RIEDL, 1998; JANKUN-KELLY

et al., 2007)), while others focus on descriptions of cognitive analysis activities or

tasks, (RUSSELL et al., 1993; CARD et al., 1999; AMAR and STASKO, 2005; THOMAS

and COOK, 2005). For the focus of this dissertation, the last group of research on

cognitive analysis and tasks is highly relevant to help inform an understanding of the

differences and similarities to collaborative analysis practices.

Increasing our understanding of how data analysis is performed, provides insight into

the design interactive visualizations that support this process. Several heuristics exist

from which one can draw advice on the design of interactive visual representations,

however the heuristics often differ in focus (ZUK et al., 2006). For example, the focus

may be on a certain data domain, e. g. for ambient displays (MANKOFF et al., 2003),
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interaction (BALDONADO et al., 2000), task support (SHNEIDERMAN, 1996), or based

on perception and cognition (WARE, 2000; AMAR and STASKO, 2005). Heuristics for

the design of information visualizations can be used to inform the development of

guidelines for collaborative information visualization systems based on the chosen

tasks and datasets.

2.2 Co-located Synchronous Collaboration

Humans have considerable experience working together with others in a shared space

at the same time. In the area of CSCW, several approaches have been described that

have been designed to support synchronous co-located collaboration with technol-

ogy. This technology can be in the form of large single-display technology like inter-

active wall (e. g. (GUIMBRETIÈRE, 2002, Ch. 4)) or tabletop displays (e. g. WELLNER

(1993)), or in the form of integrated mobile and wireless devices (e. g. JOHNSON

et al. (2002)). To narrow the focus of this thesis, I will concentrate on collabora-

tion around single-display technology (STEWART et al., 1999). Research in this area

has, for example, described mechanisms to support coordination of activities in the

workspace (e. g. NACENTA et al. (2007); RINGEL MORRIS et al. (2004); SCOTT et al.

(2004)), awareness of group member’s activities (e. g. (TANG et al., 2006)), access to

and transfer of items in the workspace (e. g. (KRUGER et al., 2004)). As part of my

proposed research, I have described several aspects of how research within CSCW,

and in particular co-located collaboration, can be applied to the design of co-located

collaborative information visualization systems (ISENBERG and CARPENDALE, 2007).

Details can be found in the Section 4 and in the Appendix.

2.3 Collaborative Information Visualization

Research on the process of collaborative data analysis using information visualizations

is relatively scarce. MARK et al. (2002, 2003) conducted a user study in which they

observed pairs working in co-located and distributed settings with two different vi-

sualization systems designed for single users. Their findings suggest that the benefit

of collaborative vs. individual problem solving was heavily dependent on the visual-

ization system used but that, in general, groups were better at locating errors (MARK

et al., 2002). In their second paper, MARK et al. (2003) introduce a model for the

collaborative problem-solving process. The model consists of an iterative sequence of
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five stages: parsing a question, mapping variables to the program, finding the correct

visualization, and two validation stages. The second analysis of this study cautioned

that for co-located collaboration, the placement of system controls affected the roles

that collaborators were taking on during their shared work. This finding was highly

influenced by their study setup as groups had to negotiate their interactions through

a single input device in systems design for individual use on a desktop screen.

2.3.1 Distributed Visualization Systems

Most of the research into collaboration around information visualization has focused

on distributed data analysis. CoMotion is a collaborative environment for creating

information analysis and decision-support applications (MAYAVIZ, 2007). The appli-

cation provides shared views of the data on which all users can synchronously interact.

The Command Post of the Future is a visualization tool built on this architecture in

which distributed team members can share visualizations of natural emergencies and

combat situations (CHUAH and ROTH, 2003). DecisionSite Posters (SPOTFIRE, INC.,

2007), is a web-based system for asynchronous collaborative work around informa-

tion visualization. It allows users to publish visualization results, descriptions, and

data to distributed collaborators in interactive web-based reports. Many Eyes (VIÉ-

GAS et al., 2007), and Swivel1 are two systems that are targeted at an internet-scale

audience and both collaborative sharing and exploration of data by letting users up-

load and visualize data as well as comment on created visualizations.

While my research is not directly concerned with distributed collaborative visualiza-

tion, this work will help to inform my research where relationships can be drawn

between information visualization in distributed and co-located settings.

2.3.2 Co-located Visualization Systems

The responsive workbench was one of the first visualization systems for co-located

collaboration around a large horizontal surface (WESCHE et al., 1997). The respon-

sive workbench is a virtual reality environment in which the displayed 3D scene is

looked at through shuttered glasses. Several scientific visualization applications were

developed for this platform including fluid dynamics or flow visualizations and situa-

tional awareness applications.

1 http://www.swivel.com/
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There are fewer systems which have attempted to provide an environment specifi-

cally for co-located collaboration around information visualizations. With a focus on

interaction, radial tree layouts have been studied for collaborative circular tabletop

systems (VERNIER et al., 2002). In their system Vernier et al. provide two different

fisheye mechanisms to support different types of user activity around the tabletop.

Interactive focus+context techniques for collaborative systems have further been ap-

plied in the DTLens system by FORLINES and SHEN (2005). Initial work done as part

of this dissertation involved first providing a set of guidelines for the development

of collaborative information visualization systems and then creating a system design

based on these guidelines (ISENBERG and CARPENDALE, 2007).

2.4 Summary

Research in information visualization draws from the intellectual history of several

traditions, including computer graphics, human-computer interaction, cognitive psy-

chology, semiotics, graphic design, statistical graphics, cartography, and art (MUN-

ZNER, 2000). The synthesis of relevant ideas from these fields is critical for the design

and evaluation of information visualization in general and it is only sensible to think

that research concerned with collaborative work also adds valuable information to our

understanding of requirements for collaborative information visualization systems.

During my dissertation I will work towards extending our understanding of require-

ments for the design of co-located collaborative information visualization systems by

integrating appropriate research from several fields as discussed above. Further in-

formation on progress in this direction can be found in Section 4.

3 Research Overview

The design of collaborative systems poses challenges that have not previously been

considered in single-user information visualization. In a group setting the use of

co-located collaborative technology needs to support a process of social interaction

around the data, ideally, helping the group to arrive at a common understanding of

the data through a process of collaborative interpretation, analysis, discussion, and

interaction. That is, using these tools, groups can gain more than the simple combina-

tion of two persons’ individual insight from the data. The different goals of individual
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and collaborative information visualization are summarized in Figure 3. In Figure 3a

a single person arrives at an insight or discovery through a process of looking at and

possibly interacting with an information display, forming a mental model and inter-

preting the data display, and ideally gaining an insight (SPENCE, 2007). In Figure 3b

two people join in a collaborative analysis. They both come to individual insight by

looking at and interpreting the dataset but through the social interaction (discussion,

negotiation, interaction) they both can reach a common understanding of the dataset

which may lead to more effective decision making.

(a) A single analyst looks at the
digital visualizations, engages in
cognitive processing about the
visual data display, and, ideally,
arrives at an insight or discovery
about the data set.

(b) Two analysts join in a collabora-
tive analysis scenario. The goal
is that both will come to a com-
mon understanding of the data
(group cognition) through visu-
alization use.

Figure 3 – Goals of single-user and collaborative information visualization.

The challenge in designing information visualization for this type of synchronous and

co-located collaborative work is that mechanisms need to be designed that support

the ways people work together during an analysis. It is still relatively unexplored how

to design these systems so that they support the generation of a common understand-

ing through collaborative interaction with and analysis of information visualizations.

This thesis does not attempt to describe all the ways that technology does or could

impact upon synchronous co-located collaborative data analysis but instead proposes

to shed light on a specific set of research problems. This includes a literature review of

related CSCW research, an investigation into collaborative analysis practices, the im-

plementation of a specific collaborative system, and a study of collaborative software

with domain experts in a microbiology research lab (see Figure 4).

We need to consider how to apply previous research on collaborative technology to

the problem of co-located collaboration around information visualization. In partic-

ular, we need to consider previous studies for the design of software for co-located col-
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Figure 4 – Research Proposal.

laboration (e. g., GUTWIN and GREENBERG (1998); KRUGER et al. (2004); RINGEL MOR-

RIS et al. (2004); SCOTT et al. (2004); TANG et al. (2006)). However, work around

information visualizations such as discovery and analysis tasks, differs from other col-

laborative work scenarios like design projects, information organization (e. g. photo

sorting), or document editing in several ways. For one, the outcome of an infor-

mation analysis is not a product (design, organized photo collection, or an edited

document) but is an understanding or insight. Other possible issues arise because

information visualizations have both an interaction component and a data represen-

tation component. Both of these components may need rethinking and redesigning.

How general guidelines and research on the design of systems for other co-located

collaborative work apply to data analysis scenarios is an open problem. Part of my

research plan is to do an in-depth literature survey to see how and where research

on co-located and distributed synchronous collaboration applies to synchronous co-

located data analysis scenarios (À in Figure 4). This analysis will lead to an initial

set of design guidelines for these systems (Â in Figure 4). Progress in this direction is

summarized in Section 4.

One of the design challenges for co-located collaborative information visualization

systems is that we do not yet have a clear understanding of the information analy-

sis methods used during collaborative work. In order to design digital information

visualization systems that can adequately support collaborative work, we need to

investigate how people collaboratively analyze information. How are information vi-

sualizations used by teams? How could teams use information visualizations in their

collaborative process? For example, how a single doctor analyzes biomedical infor-

mation visualizations might differ from how a team of doctors analyzes the same
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data. While many researchers have explored the information analysis process (e. g.,

CARD et al. (1999); JANKUN-KELLY et al. (2007); SPENCE (1999)), little has emerged

on the nature of these methods in a collaborative context (e. g., MARK et al. (2003)).

I plan to investigate the differences between how individuals and small co-located

teams (e. g., two to three individuals) make use of visual information during collabo-

rative work, starting with an investigation into how analysis is conducted in a natural,

non-digital setting (see Á in Figure 4 and Section 4).

The result of the first two phases of my proposed research can help to form a set of ini-

tial design requirements for digital co-located collaborative information visualization

systems. Starting from these requirements (Â in Figure 4) I propose to design a sys-

tem for co-located collaborative work around interactive information visualizations

(Â in Figure 4). This system will be designed for an expert user group, a microbiol-

ogy lab at the University of Calgary. Using this system I will perform a field study with

the goal of increasing my understanding of the requirements of technology use in a

real-world environment. I plan to first understand how and when collaborative data

analysis is currently conducted in their research environment and then iteratively de-

sign software to support aspects of this work process. The information gained from

such an evaluation will inform our understanding of the use of digital collaborative

software for data analysis in an example work settings (Ã in Figure 4).

4 Contributions Thus Far

To this point in my research, I have contributed:

• a set of derived design guidelines for co-located collaborative information visu-

alization systems from an in-depth literature review, and

• the articulation of eight processes common to collaborative data analysis that

need to be supported in co-located collaborative information visualization tools.

The initial set of design heuristics is derived from a literature review of three research

areas: information visualization, distributed and co-located collaboration advice, and

the studies that look directly at collaborative visualization. The intention is that these

design guidelines will form a basis which will adjust and expand as research in col-

laboration around information visualizations continues. The set of guidelines is one

of the first specifically tailored towards the design of digital information visualization
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systems for co-located synchronous data analysis and has been published in Trans-

actions on Visualization and Computer Graphics (Proceedings of InfoVis) (ISENBERG

and CARPENDALE, 2007).

These design guidelines were used2 to develop a digital system to support different

working styles around information visualizations on digital tabletop displays (ISEN-

BERG and CARPENDALE, 2007). I developed a collaborative environment in which

hierarchical data can be explored and compared through the use of several features

that have been designed to facilitate collaborative work practices: multi-user input,

shared and individual views on the hierarchical data visualization, flexible use of rep-

resentations, and flexible workspace organization. One example analysis scenario

using my system can be seen in Figure 5. In this case, I focused on a specific data

type (hierarchical data sets) and task (hierarchical data comparison), and a clear next

step would be to understand how existing single-user representation and visualization

interaction techniques should be modified to fulfill the needs of analysis teams.

Figure 5 – Use of my collaborative tree comparison software.

One of the problems uncovered during the initial literature review and design of a

collaborative software prototype was that we do not have a good understanding of

how groups analyze information together in a shared workspace and how information

visualization are read and interacted with during analysis. A knowledge of these

processes is important to adequately support these analysis practices with software.

To inform our understanding of collaborative data analysis practices, I conducted3

an observational study to understand the visual analysis process for small groups

2 Co-author on this work: Sheelagh Carpendale
3 Co-authors on this work: Anthony Tang and Sheelagh Carpendale
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compared to individuals (NEUMANN et al., 2007). We decided to observe partici-

pants’ natural working styles, unencumbered by any specific digital interface (see

Figure 6). This setup allowed the observation of people’s approach to group analysis

of visual information including behaviours such as free arrangement of data, annota-

tion practices, and different ways of working with individual information artefacts—

behaviours that would not otherwise be observable given most digital information

visualization tools. A key drawback of this approach is that we would not see how

typical interactions in information visualization tools (such as selection, encoding, or

presentation parameter manipulations) would be used; however, our specific interest

was in uncovering the general processes involved in collaborative and individual visual

analysis.

The analysis of our observations revealed eight processes common to how participants

completed the tasks in our study. We have shown how these eight processes relate

to other models of information analysis, and provided insights on differences and

commonalities between them. Yet, while others have posited a general temporal flow

of information analysis, our results suggest this temporal flow may simply reflect

an assumption in the design of existing information visualization tools. Thus, we

argue that designers should consider individuals’ unique approaches toward analysis

by supporting a more flexible temporal flow of activity.

Figure 6 – Users explore data collaboratively during an observational study.

5 Future Contributions

For the remainder of my PhD I will explore data analysis in the context of a biology

research lab. I have started a collaboration with Mike Surette’s Bacterial Pathogenesis

Research Group at the University of Calgary that currently performs collaborative

analysis of data derived from their own experiments. Within their environment I plan

to conduct three main research activities:
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1. investigation on the types of collaborative data analysis used within this re-

search lab

2. development of a software prototype for co-located collaborative data analysis

3. study this prototype system with expert users from this research group

Investigation on Collaborative Analysis Activities:

My initial investigations indicate that several different types of synchronous co-located

collaborative analysis practices are used: (a) casual co-located data analysis analysis,

for example when one person casually asks another person to take a look at the results

from his or her latest experiment; and (b) formal, synchronous, co-located data anal-

ysis activities, for example, when students, post-docs, and faculty join in a planned

labmeeting to discuss the results of an experiment.

I intend to continue my studies and investigation in order to learn how this list can

be extended and refined. I want to find out at which stages during the analysis

of an experimental dataset co-located data analysis is conducted, for which types

of questions, and in which form. This investigation will inform my understanding

of where and how the different types of co-located data analysis can be supported

with technology. While there are many methodologies I could use (such as different

types of observations, interviews, focus groups, etc. (DENZIN and LINCOLN, 2005))

to approach this study, I am still considering which will be the most appropriate

methodology. I will likely choose some combination of contextual inquiry, in-depth

interviews, and questionnaires.

Prototype Development:

Initial discussions with biologists revealed that they currently have no software sup-

port for co-located collaborative data analysis. That is, with their current software it

is not possible for several people to interact with the data displays. Their data analysis

currently involves the use of several disconnected software tools. For example, first

Excel is used to format the data, and then the result is used in a program for cluster

analysis. The cluster result is then used as input for another program that creates a

visual display of the results. From these results, static images are created for casual or

formal discussions. During the formal discussions I observed, lab members frequently

expressed the wish to discuss a representation of the data based on different parame-

ters (e. g. a different cluster algorithm) or using a different data representation. This

would require the presenter to retrace their analysis steps and create a new represen-

tation to include in their presentation and this is typically left for another meeting.
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During a demonstration of my initial research prototype (see Section 4) several biol-

ogists stated that such a system could greatly enhance their data analysis practices.

My prototype, however, since it was designed based on higher-level interaction and

collaboration advice, is not specific enough in that it does not support the specific

data and analysis tasks important to this research group.

The knowledge from directly studying collaborative data analysis practices as they

actually take place in the biology research lab plus the knowledge from my previous

research will inform the design of a digital system that helps to support a more in-

teractive collaborative discussion of their data graphics. The software for this system

will be designed in collaboration with Matthew Tobiasz, a MSc student in the iLab.

We are currently in the process of understanding the typical data sets that the biolo-

gists analyze and which tasks are involved in drawing conclusions from the data. We

intend to further involve our expert user group in a user-centered design approach.

Insight gained from their involvement during the initial design exploration and prob-

lem definition will be used to direct the system development and will help to evaluate

proposed solutions. The task of developing the analysis software will be divided be-

tween me and Matthew in a way that individual contributions are clearly separable.

While we both are taking part in the participatory investigations, Matthew will focus

on the development of the representation of the biologist’s data and I will focus on

the changes, adjustments, interactions, and widgets required to enable the observed

collaborative practices.

Investigation into Software Use:

Once a first usable prototype has been developed, I will investigate how this digital

system will be used and how it influences or changes the biologists’ way of collabo-

rating around data. In particular, I am interested in increasing my understanding of

the eight analysis processes uncovered in my previous work (see Section 3) and ex-

ploring and evaluating whether and how our software supports these eight analysis

processes. Insights will help to improve the software design and will shed light on

how participants engage in the eight processes using interactive digital information

visualizations.
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6 Timeline

The following timeline (Figure 7) shows my past research and future plans for com-

pleting the remaining phase of my research. As indicated above, I have conducted

an initial literature review in the summer of 2006 into research that can help to in-

form design of co-located collaborative information visualization systems. I expect

this review to expand as my research continues. In Fall 2006 I implemented an initial

research research prototype. The pen and paper based study of collaborative analysis

process was designed, conducted, and analyzed during Winter and Spring 2007. In

the Fall of 2007 I have begun initial explorations into the work processes at a biology

research lab. These preliminary results will be used to design a formal study of the

analysis processes used in their research environments and inform the implementa-

tion of a co-located collaborative software environment in the Winter and Spring of

2008. This software will in turn be analyzed with the domain experts during the

Summer of 2008. Then, I plan to spend two semesters writing my thesis in order to

defend by Spring 2009.

?

Summer 2006 Literature Review

Fall 2006 Implementation of Prototype

Winter/Spring 2007 User Study of Collaborative Analysis Process

Fall 2007 Initial Field Study for Technology Deployment

Winter/Spring 2008 Microbiology Analysis Study and Technology Development

Summer 2008 User Study in Biology Research Lab

Fall/Winter 2008 Thesis Writing

Spring 2009 Thesis Defense

Figure 7 – Proposed thesis timeline.
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Appendix

• Accepted paper on literature review and prototype design: in IEEE Transactions
on Visualization and Computer Graphics 12(5).

• CHI 2008 submission on study of visual analysis process.
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Interactive Tree Comparison for
Co-located Collaborative Information Visualization

Petra Neumann and Sheelagh Carpendale

Abstract—In many domains increased collaboration has lead to more innovation by fostering the sharing of knowledge, skills, and
ideas. Shared analysis of information visualizations does not only lead to increased information processing power, but team members
can also share, negotiate, and discuss their views and interpretations on a dataset and contribute unique perspectives on a given
problem. Designing technologies to support collaboration around information visualizations poses special challenges and relatively
few systems have been designed. We focus on supporting small groups collaborating around information visualizations in a co-located
setting, using a shared interactive tabletop display. We introduce an analysis of challenges and requirements for the design of co-
located collaborative information visualization systems. We then present a new system that facilitates hierarchical data comparison
tasks for this type of collaborative work. Our system supports multi-user input, shared and individual views on the hierarchical data
visualization, flexible use of representations, and flexible workspace organization to facilitate group work around visualizations.

Index Terms—Information visualization, collaboration, co-located work, hierarchical data comparison.
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1 INTRODUCTION

It is common for small groups to gather around information that often
involves some sort of visualization. Imagine a team of medical practi-
tioners (doctors, nurses, physiotherapist, social workers) examining a
patient’s medical record to create a discharge plan, a team of geologists
gathering around a large map to plan an upcoming expedition, or a
team of executives looking at charts showing the latest sales trends. In
many disciplines, collaboration allows for a multi-disciplinary group
with an increased skill set. Different team members offer different per-
spectives and expertise that together can improve the quality of the so-
lutions. Analyzing data collaboratively can also have several benefits.
For instance, the information space may simply be too complex for an
individual to interpret in its entirety, or the dataset may be susceptible
to a variety of interpretations, in which case experts may discuss and
negotiate their interpretations of the data. With large data sets, even
the task load of exploring the data could be shared among several in-
dividuals on a team [33]. The benefits that collaboration offers to this
process have motivated us to shift our efforts from single-user informa-
tion visualization tools toward the design of collaborative information
visualization tools.

Current information visualizations have mostly been designed from
a single-user perspective. While it is possible for small teams to work
with information visualizations using the standard setup of a small
screen, one mouse and one keyboard, only one person at a time is able
to make any changes to the view of the system. Attempting to collabo-
rate under these conditions can be awkward and unnatural. The recent
trend toward the use of large interactive displays offers the potential for
the development of improved collaborative information visualization
systems in which many co-located users can simultaneously interact
and explore data sets. However, it is not yet understood how inter-
faces, visualizations, and interaction techniques should be designed to
specifically address the needs of small co-located groups. The research
problem we address is that, while most information visualization tools
support sophisticated interaction with data, they have only limited fa-
cilities to support the collaborative activity of a team [14].

Research into supporting computer-supported cooperative work
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(CSCW) has considered both collaborations across distances (dis-
tributed) and collaborations where the team shares the same workspace
(co-located) [12]. In our research, we focus on co-located collabora-
tion. We present a collaborative information visualization system that
supports collaborative analysis of data for small groups as they gather
around an interactive digital table. Hierarchical data visualizations can
be explored and compared in our environment through the use of sev-
eral features that have been designed to facilitate collaborative work
practices: multi-user input, shared and individual views on the hierar-
chical data visualization, flexible use of representations, and flexible
workspace organization.

Our main contributions are: an analysis of challenges and require-
ments for the design of co-located collaborative information visual-
izations and a visualization system for collaborative tree comparison
tasks around a large multi-touch tabletop display.

2 RELATED WORK

We start by reviewing the relatively small body of research that is di-
rectly concerned with the problem of supporting collaborative work
around visual information. Then we consider research in the syn-
chronous and asynchronous distributed domains, followed by a discus-
sion of the work that focuses on supporting group analysis of visualiza-
tions in a shared space. Lastly, we discuss related work in the area of
hierarchical data comparison to lay a foundation for our collaborative
visualization system.

2.1 Collaborative Information Visualization

Research on the process of collaborative data analysis using informa-
tion visualizations is relatively scarce. Mark et al. [14, 15] conducted a
user study in which they observed pairs working in co-located and dis-
tributed settings with two different visualization systems designed for
single users. Their findings suggest that the benefit of collaborative vs.
individual problem solving was heavily dependent on the visualization
system used and also that, in general, groups were better at locating er-
rors [15]. In their second paper, Mark et al. [14] introduce a model for
the collaborative problem-solving process. The model consists of an it-
erative sequence of five stages: parsing a question, mapping variables
to the program, finding the correct visualization, and two validation
stages. For collaborative work on scientific visualizations in virtual
environments using CAVEs, Park et al. [20] report a five-step activ-
ity model that was common for the observed collaboration sessions.
Their study also noted that participants showed a strong tendency for
independent work, if the option was available.



2.1.1 Distributed Visualization Systems
In the area of scientific visualization, distributed systems have been
introduced as early as 1994 [1] (see [6] for an overview). There is
less research focused on distributed collaborative systems more di-
rectly concerned with information visualization. CoMotion is a col-
laborative environment for creating information analysis and decision-
support applications [16]. The application provides shared views of
the data on which all users can synchronously interact. The Com-
mand Post of the Future is a visualization tool built on this archi-
tecture in which distributed team members can share visualizations
of natural emergencies and combat situations [3]. Examples of web-
based asynchronous collaborative environments include sense.us [9],
Many Eyes1, and Swivel.2 They all allow collaborative sharing and
exploration of data by letting users upload and visualize data as well
as comment on created visualizations. DecisionSite Posters [17], an-
other web-based system for asynchronous collaborative work around
information visualization, allows users to publish visualization results,
descriptions, and data to distributed collaborators in interactive web-
based reports.

2.1.2 Co-located Visualization Systems
The responsive workbench was one of the first visualization systems
for co-located collaboration around a large horizontal surface [37].
The responsive workbench is a virtual reality environment in which
the displayed 3D scene is looked at through shuttered glasses. Several
scientific visualization applications were developed for this platform
including fluid dynamics and situational awareness applications.

With a focus on interaction, radial tree layouts have been studied for
collaborative circular tabletop systems [35]. In their system Vernier
et al. provide two different fisheye mechanisms to support different
types of user activity around the tabletop. Interactive focus+context
techniques for collaborative systems have further been applied in the
DTLens system [4]. In general, no guidelines, as of yet, exist for the
development of collaborative systems specifically tailored for informa-
tion visualization applications.

2.2 Hierarchical Data Comparison Systems
The work most closely related to our approach is the TreeJuxtaposer
system by Munzner et al. [18]. In this work structural comparison of
nodes is facilitated by finding the most similar (or best corresponding
node) to one tree in another tree. The best corresponding node(s) and
dissimilar nodes are highlighted in their system giving an overview
of structural differences and similarities between trees. Graham and
Kennedy [5] present a system for linked highlighting across several
hierarchies. Similarities are shown by giving similar nodes new degree-
of-interest values leading to a more prominent display in the hierarchy.
We chose to use the similarity measure as described in [18] to calculate
similarities across our hierarchies. Our system extends comparative
possibilities by incorporating collaborative comparative interactions.

3 DESIGN GUIDELINES FOR CO-LOCATED COLLABORATIVE
INFORMATION VISUALIZATION SYSTEMS

In this section we discuss design guidelines specifically for co-located
collaborative information visualization systems. These design heuris-
tics are condensed from information visualization design advice [29,
38, 39, 40], co-located collaboration advice [8, 13, 23, 21, 24, 25, 26,
27, 28, 32], the studies that look directly at collaborative visualiza-
tion [14, 15, 20] and our observations of teams of people collaborat-
ing to solve tasks using information visualizations [19]. Other design
heuristics exist that can guide the developer of an information visual-
ization system in terms of the data domain, cognitive levels based on
knowledge and task, or perception and cognition [41]. In the field of
computer supported collaborative work (CSCW) a set of main design
guidelines has been established for collaborative systems in general
(e. g., [21, 28]); however, they do not take the specific problems and re-
quirements of information visualization applications into account. Our

1http://services.alphaworks.ibm.com/manyeyes/home/
2http://www.swivel.com/

intention is that these design guidelines, compiled from three bodies
of research, will form a basis which will adjust and expand as research
in collaboration around information visualizations continues.

3.1 Hardware and System Setup

In this section we consider guidelines for the design of the physical
workspace in which the collaborative activities around information vi-
sualization can take place.

Size: In information visualization, the size of the available dis-
play space has always been problematic for the representation of large
datasets (e. g., [18]). In a common desktop environment, typically a
single user will use all available screen space to display their visualiza-
tion and, most commonly, this space will not be sufficient. Frequently,
visualization software will include interactive features to help the user
cope with limited display space. It seems sensible to think that, if we
are going to adequately support collaborative or team exploration of
visualizations, available display space will be an important issue. In
collaborative systems, screen space has not only to be large enough for
the required information display, it might also have to be viewed and
shared by several users. As the number of people using a shared infor-
mation display grows, the size of the display and workspace needs to
be increased in order to provide a large enough viewing and interac-
tion area that gives equal access to all group members.

Configuration: Several configuration possibilities exist that could
enlarge an information display, all of which will affect the type of vi-
sualization system possible and the type of collaboration work that
would be most readily supported. Many types of configurations are
possible, for instance one could provide team members with intercon-
nected individual displays, as in the ConnecTable system [31], or one
could make use of large interactive single-display technology, like dis-
play walls or interactive tabletop displays (e. g., [32]). An additional
possibility is to link wall, table, and personal displays (e. g., [38]), or
to consider immersive displays (e. g., [20]). The type of setup most
appropriate for an information visualization system will depend on the
specific task and group setup. For example, individual interconnected
displays allow for private views of at least parts of the data which
might be required if data access is restricted. Tabletop displays have
been found to encourage group members to work together in more co-
hesive ways, whereas wall displays are beneficial if information has to
be discussed with a larger group of people [24].

Input: In the common desktop setup, input is provided for one
person through keyboard and mouse. To support collaboration, ide-
ally, each person would have at least one means of input. In addition,
it would be helpful if this input was identifiable, making it possible
to personalize system responses. If a collaborative system allows for
multi-user input, the access to a shared visualization and data set has
to be coordinated. Also, synchronous interactions on a single repre-
sentation may require the design and implementation of new types of
multi-focus visualizations. Ryall et al. [25] have addressed the prob-
lem of personalization of parameter changes for widget design. Based
on user identity, their widgets can be dynamically adapted for individ-
uals within a group. Similar ideas could be implemented for personal-
ization of information visualizations during collaborative work.

Resolution: Resolution is an issue both for the output (the dis-
play) and for the input. The display resolution also has a great in-
fluence on the legibility of information visualizations. Large display
technology currently often suffers from relatively low display resolu-
tion so that visualizations might have to be re-designed if readability
of text, color, and size is affected by display resolution. Large inter-
active displays are often operated using fingers or pens which have a
rather low input resolution. Since information visualizations often dis-
play large data sets with many relatively small items, the question of
how to select these small items using low input resolution techniques
becomes an additional challenge that needs special attention [11].



Interactive response: Implementations of collaborative informa-
tion visualizations have to be carefully designed for efficiency. Individ-
ual information displays can already be computationally intensive and
require considerable pre-processing (e. g., [18]). Yet, in collaborative
systems several information visualizations might have to be displayed
and interacted with at the same time. While powerful hardware can
solve the problem to some extent, efficient data processing as well as
fast rendering of the graphical representations should be considered
when the needs of several users have to be addressed.

3.2 Designing the Information Visualization
Many known information visualization guidelines will still apply for
the design of information visualizations for large displays or collabora-
tive use (e. g., [2, 34, 36]). In this section we discuss additional aspects
that need to be considered for the design of information visualizations
for collaborative settings.

Supporting Mental Models: It has been shown that providing
capabilities to freely move interface items is critical for group interac-
tions and task coordination during co-located collaborative work [26].
Letting users impose their own organization on items in the workspace
may help collaborators create and maintain mental models of a dataset
that contains several different representations. By freely moving rep-
resentations, team members can impose their own categorizations on
the representations by, for example, placing them in close proximity
or in piles relevant to a task.

Representation Changes: Zhang and Norman [40] found that
providing different representations of the same information to individu-
als provides different task efficiencies, task complexities, and changes
decision-making strategies. In a collaborative situation, group mem-
bers might have different preferences or conventions that favour a cer-
tain type of representation. Gutwin and Greenberg [8] have discussed
how different representations of the workspace affect group work in
a distributed setting. They point out that providing multiple repre-
sentations can aid the individual but can restrict how the group can
communicate about the objects in the workspace. This extends to co-
located settings in which several representations of a dataset can be
personalized according to taste or convention making it harder to re-
late individual data items in one representation to a specific data item
in another. For example, relating one specific node in a Treemap to
another node in a node-link diagram might require a search to locate
the respective node in the other representation. Implementing mecha-
nisms to highlight individual data items across representations might
aid individuals when switching between group and more parallel data
exploration.

Task History: Collaborative information visualization systems
should also provide access to some form of data analysis history.
While this is true for information visualizations in general [29], it
might be of even higher importance in collaborative settings. Chua
and Roth [3] have suggested that capturing and visualizing informa-
tion about interactions of collaborators with objects in a workspace
may enhance collaboration by leading to a better understanding of
each others’ involvement in solving a task. As group members switch
between work on individual and shared views of the data, they might
lose track of the interactions of their collaborators [8]. The access to
an exploration history can help in later discussing the data and explo-
ration results with collaborators or informing them about interesting
data aspects that have been found during the analysis process.

Perception: Relatively little has been done to analyze how the in-
terpretation of information visualizations is affected when viewed on
different display configurations. A study by Yost and North [39] eval-
uated the scalability of three visualizations across a small and large,
high-resolution display. Their study does not take the requirements of
collaboration into account but provides several guidelines for design-
ing visualizations for large displays: considering encodings according
to viewing angle, choosing visualizations for scalable encoding, pro-
viding global and local legends, and strategic label placement. A study
by Wigdor et al. [38] evaluated the effect of viewing angle on different

graphical variables and suggests that care should be taken in position-
ing and choosing the appropriate visual encoding as some graphical
elements are more robust to distortion than others. In the case of collab-
orative work around a large horizontal display, group members might
be positioned on different sides of the display, thus viewing shared vi-
sualizations from different directions. It has to be evaluated how the
legibility of information visualizations is affected by different viewing
directions. So far, it is not known if, for example, an upside-down bar
chart would lead to inaccurate readings of the data.

3.3 Designing the Collaborative Environment
Pinelle et al. [21] provide a set of basic operations that should be sup-
ported by groupware systems to help collaborators carry out their tasks
as a team. These mechanics of collaboration can be grouped into
those describing communication and coordination aspects of collab-
oration. Collaborative information visualization systems also require
additional support for communication, coordination, and changing col-
laboration styles to further the analytics process.

Coordination: In group settings, collaborators have to coordinate
their actions with each other. Here, we describe several guidelines
for how to support the coordination of activities in collaborative
information visualization applications.

Workspace Organization: Typical single-user information visual-
ization systems impose a fixed layout of windows and controls in the
workspace. Previous research has shown that, on shared workspaces,
collaborators tend to divide their work areas into personal, group,
and storage territories [27]. This finding implies that a group inter-
action and viewing space is needed for collaborative data analysis
where the group works on a shared representation of the data or in
which shared tools and representations. Also, the possibility to ex-
plore the data separately from others, in a personal space, is necessary.

Fluid Interaction: Collaborative systems should support fluid
transitions between activities to improve the coordination of activities
[28]. This implies that information analysis tasks that require the
application of tools (filters, lenses, . . . ) or changing of view or
visualization parameters should be designed to require (a) as little
shift of input mode (mouse, keyboard, pen, finger, . . . ) as possible,
and (b) as little manipulation of interface widgets and dialogs as
possible. For information visualizations, this is a difficult design
problem, as systems frequently offer extensive lists of parameters
to manipulate in order to provide flexible interaction. Similarly, the
study on collaborative information visualization by Mark et al. [15]
suggests that groups work more effectively if the interactions with a
system are easier to understand.

Information Access: Information access through information
visualizations also needs to be coordinated on a global and local scope.
What if one group member found something in the data that he or
she wishes to delete or modify? Who can change the scale, zoom, or
rotation settings for a shared view of the data? Policies might have to
be put in place to restrict certain members from making unsuspected
global changes to the data that might change other group members’
view of the same data [23].

Collaboration Styles: Tang et al. [32] describe how collabora-
tors tend to frequently switch between different types of loosely
and closely coupled work styles when working over a single, large,
spatially-fixed information display (e. g., maps or network graphs). A
study by Park et al. [20] in distributed CAVE environments discov-
ered that, if the visualization system supports an individual work style,
users preferred to work individually on at least parts of the problem.
For information visualization systems, an individual work style can be
supported by providing access to several copies of one representation.
The availability of unlimited copies of one type of representation of
data allows group members to work in parallel. More closely coupled
or joint work on a single view of the data can be supported by imple-
menting the possibility of concurrent access and interaction with the
parameters of an information visualization. Free arrangements of rep-
resentations also supports changing work styles. Representations can



be fluidly dragged into personal work areas for individual or parallel
work and into a group space for closer collaboration.

Communication: Communication is an important part of success-
ful collaborations. People need to be able to trigger conversations,
communicate about intentions to change collaboration styles, indicate
a need to share a visualization, and to be generally aware of their team
members’ actions. Providing awareness of global changes is impor-
tant to support communication about the information analysis process
[8, 3]. Group members need to be informed that some parameter of a
shared display might have changed while they were busy working with
an information visualization in a different part of the workspace. If
group members decided to work in parallel on different subproblems,
the visual comparison of the individual graphical exploration results
has to be supported in order to make group discourse on the results
possible. To enrich the discourse about individual visualization explo-
ration results, additional interaction schemes such as annotation of the
results should also be included [9].

Flexible workspace organization can offer the benefit of easy shar-
ing, gathering, and passing of representations to other collaborators.
By sharing data in the workspace, representations will be viewed by
team members with possibly different skill sets and experiences and,
therefore, subjected to different interpretations. Also, by being able
to move and rotate representations in the workspace, an individual
can gain a new view of the data and maybe discover previously over-
looked aspects of the data display. Communication can also be sup-
ported through the design of gathering and sharing mechanisms. How-
ever, the design of these mechanisms needs to respect common social
and work protocols [13, 23, 27]. For example, the interface should
not require a group member to reach into or across another person’s
workspace in order to acquire or share visualizations or controls.

4 A SYSTEM FOR CO-LOCATED COLLABORATIVE WORK WITH
INFORMATION VISUALIZATIONS

This section provides a detailed description of our information visual-
ization system designed to support collaborative tree comparison tasks.
Paralleling our design guidelines section we describe our hardware
setup, our information visualizations and then those aspects specially
included to support collaboration. Then, in Section 5, we describe this
system in use for a collaborative tree comparison task.

4.1 Hardware and System Setup
Our system was designed to run on a large digital tabletop display;
however, using it on large wall displays is also possible. Our digital
table is built using a touch-sensitive DViT Board from SMART Tech-
nologies with two concurrent and independent inputs (see Figure 1).
The tabletop setup has 2,800 × 2,100 pixels (≈ 5.9 mega pixels) pro-
vided by four rear-mounted projectors (2 × 2). This setup offers an ade-
quate size, configuration, input, and resolution for small groups of 2–4
individuals to work together. However, only two simultaneous touches
are currently supported by our technology and inputs are not identifi-
able. Our implementation is based on a general framework for tabletop
interfaces that provides a method of spatially representing properties
of the interface using a buffer approach [10]. This framework and
the buffer approach are able to maintain interactive response on high-
resolution tabletop displays. We use the framework, for example, to
implement picking and interaction regions for our widgets. The frame-
work also provides access to other tabletop interaction metaphors and
widgets such as RNT [13], tossing, and Storage Territories [26]. To
facilitate not only an efficient management of memory resources but
also to allow people to relate one visual representation of a dataset to a
different one of the same data, we maintain only one copy of this under-
lying dataset. Each visual representation of a dataset is then realized
using a set of meta data to represent the specific visual appearance.

4.2 Information Visualizations
Our system supports work with hierarchical data, specifically with two
different types of tree representations: a space-filling radial tree layout
and a cladogram. We have chosen to implement a radial tree layout as

Fig. 1. The hardware setup for our collaborative information visualization
application. Two simultaneous pen or finger inputs are possible.

presented in [30], with a minor adjustment that places labels in a cir-
cular fashion inside the nodes (see Figure 2, left). We chose this type
of labeling to facilitate orientation-independent reading from different
positions around the tabletop display. Since tree comparison is a task
commonly performed on phylogenetic trees [18] we also implemented
a cladogram tree layout (see Figure 2, right). In the cladogram layout,
all leaf nodes are extended to the bottom of the graph. To addition-
ally reveal their place in the hierarchy, nodes are coloured according
to their level. Our system can easily be extended to support other types
of representations.

Any information visualization and all control widgets in our system
can be freely re-oriented and repositioned. Each information visual-
ization is drawn on its own plane with appropriate controls attached
to the side. The left of Figure 3 shows a single visualization plane
showing a radial tree layout and its attached menu buttons. The menu
offers common view parameter changes: scaling (zoom), integrated
rotation and translation [13], translation only, and annotation. Thus,
the plane and attached visualization can be freely moved around the
tabletop display. The right of Figure 3 shows an arrangement of three
visualization planes on the tabletop display.

Fig. 2. The two representations used in our system. Left: a radial
tree layout with radial labeling. Right: a cladogram with additional node
colouring to reveal level information.

4.2.1 Supporting Mental Models

In Section 3, we have identified the creation and maintenance of men-
tal models of the data set as one of the possible benefits of allowing
users, rather than the interface designer, to impose a layout of visu-
alizations in the workspace. By supporting free rotation, translation,
and scale, users of our system can create their own organization of
items by putting them in piles creating a preferred layout (e. g., small
multiples). The possibility for organizing representations of data is fur-
ther supported by providing storage containers that hold visualization
planes. In these containers, visualizations can be grouped together, re-
sized, and moved as a unit (as in [26]). Figure 4 shows an example
of a visualization plane being placed in a storage container. First, the



Fig. 3. A single visualization plane showing a radial tree layout can
be seen on the left. The right image shows three visualization planes
oriented on the tabletop display.

plane is dropped on the container (left), and then automatically resized
and placed in the storage container (right). Items in the storage con-
tainer can be placed casually, neatly organized, or piled, and can then
be moved as a unit. These containers can provide a means for collab-
orators to store intermediate exploration results for later reference or
comparison.

Fig. 4. A visualization plane is being dropped on a storage container
(left) and automatically resized and placed (right).

4.2.2 Representation Changes
To support changing decision-making strategies and personal tastes
and conventions, we provide individual access to different types of
representations. If an individual group member wishes to visualize
the data using a different but appropriate representation of the data,
e. g., a containment tree layout instead of a node-link diagram, the
specific representation can be changed with a drag-and-drop operation
without interfering with other group members’ operations. Figure 5
shows how a representation change is performed. In the left image the
visualization plane is dragged onto the RepresentationChanger widget.
As soon as the plane has been placed on the widget, the representation
changes to the desired one as can be seen at the right of Figure 5.

Fig. 5. Switching a representation type with a drag-and-drop operation.

4.2.3 Task History and Perception
Our system currently only includes annotation and note taking capabil-
ities to capture exploration history (see Section 4.3.3). Further capabil-
ities will be designed and evaluated for future versions of our system.
As few evaluations (e. g. [39, 38]) have discussed the effects of per-
spective distortion and orientation on the readability of information

visualizations we have not attempted to correct for possible negative
effects.

4.3 Design for Collaboration
In this section we discuss the features of our system according to
guidelines for the design of the collaborative environment as pre-
sented in Section 3. At this time we have addressed issues concerning
workspace organization, fluid interaction, supporting differing collab-
oration styles, and communication.

4.3.1 Workspace Organization and Collaboration Styles
Free workspace organization allows us to support different work styles.
Collaborators can fluidly transition between more independent work
and closer, joint work on information visualizations. Figure 6 gives an
example in which two collaborators are working individually at first,
looking at visualizations in their own area of the workspace (Figure 6,
left) and then switch to a more closely coupled work style by investi-
gating one visualization together in more detail (Figure 6, right). Note
that the scaling mechanism has been applied to create a larger visual-
ization to accommodate the concurrent interaction and viewing of both
partners and that the plane has been rotated towards both team mem-
bers. This type of rotation has been previously identified as a strong
communicative gesture [13].

Fig. 6. Visualization planes can be freely arranged in our system. On
the left two collaborators are looking at a few representations individually.
On the right they are investigating one visualization together.

Any number of windows can be created, moved, and interacted with
in the workspace, limited only by the complexity of the graphics and
the capabilities of the graphics hardware. By allowing collaborators
to each access a copy of a representation we support parallel work on
the same data. Each dataset loaded into our system is represented as a
floating menu entry in the workspace, as can be seen at the left of Fig-
ure 7. The menu entries can be freely repositioned and, thus, passed
to other collaborators to facilitate shared access to this resource. By
pointing on the menu entry a new visualization plane with a represen-
tation of the data is created (see Figure 7, right). While initial response
has been enthusiastic, we realize that many careful studies are required
to evaluate the varying effects of our tools on group work.

Fig. 7. Creation of additional representations using floating menu en-
tries. Left: an example of a floating menu entry on the tabletop display.
Right: A user created a new visualization by touching the menu entry.

4.3.2 Fluid Interaction
Our hardware supports input using fingers or pens and reports touch
information (touch down, touch up) to the interface application. We,
therefore, have to design interaction techniques without common in-
teractions known from the desktop, like double, left, or right click.



In desktop software, dialog boxes or spatially fixed menus or param-
eter panels are usually used to change visualization parameters for a
given focus view. Most traditional widgets are not suitable for provid-
ing fluid interaction (see Section 3) and to be concurrently accessible
by several group members. During parallel work in a group setting
several visualizations might have a focus at the same time or a visu-
alization might be interacted upon by more than one person at a time.
Research on a system for collective co-located annotation of digital
photos revealed that users strongly preferred a replicated set of con-
trols over a centralized shared set of controls because the center of
the table was needed for other tasks and because replicated controls
avoided accidental touching by other teammates [22]. We, therefore,
opted for a replicated set of controls where each control could also be
freely positioned.

Currently, we implemented visualization change parameters as drag
and drop operations. For example, we implemented ColourChanger
widgets on which a visualization can be dropped in order to initiate a
change of its colour scale (see Figure 8). Alternatively, these widgets
could also be dropped on the visualization plane in order to initiate a
parameter change. This alternative would avoid having to reposition
visualization planes if a careful layout has been created by the group.
We are also experimenting with other input techniques like flow menus
[7] in order to make a large number of parameters accessible for each
visualization plane.

Fig. 8. A visualization plane is dropped on a ColourChanger widget that
changes the colour scale with which the tree is displayed.

4.3.3 Communication

To enrich the discourse of individual and group exploration of data
our system allows for annotation directly on the provided visualiza-
tions and separately on sticky notes. Interactive sticky notes for low-
resolution input [11] can be used to take general notes during the
exploration process to, for example, write down intermediate results
or variables to look for. Using these annotations, collaborators can
become aware of each others’ exploration processes even if the indi-
vidual work takes place in separate areas of the workspace. Figure 9
shows how sticky notes and integrated annotations can be used to mark
interesting information in a tree layout. By allowing visualizations to
be freely repositioned we offer a mechanism for sharing of visualiza-
tions as the windows can be be easily passed to the other collaborators.
Representations can also be passed by dragging or tossing them across
the table, similar as implemented for pictures in [26].

5 COLLABORATIVE TREE COMPARISON

In this section we show how our system functions by stepping through
a task of collaborative tree comparison. We use an example based on
the InfoVis 2003 contest3 dataset, showing how our system supports
collaborative comparison tasks.

3http://www.cs.umd.edu/hcil/iv03contest/

Fig. 9. Annotation of visualizations. Left: Annotation using interactive
sticky notes [11]. Right: Annotation integrated directly on the informa-
tion visualization.

5.1 Data and Task
As example data for our comparison tasks we used the InfoVis 2003
phylogenetic data and tasks. This dataset contains information on the
evolution of two proteins (Protein ABC and Protein IM). It has been
suggested that both proteins co-evolve and that such a co-evolution
can be detected by comparing the phylogenies of both proteins. The
high-level task was to find out whether such a co-evolution was visi-
ble. Lower-level comparison tasks included finding where structural
changes occurred in the tree. We chose to use the two main files for the
ABC and IM proteins and the additional four trees that were provided.
We did not pair proteins between the two trees.

5.2 Tree Comparison Algorithm and Visualization
We used the same similarity measure as used for the TreeJuxtaposer
system [18], which is based on comparing the sets of labels of nodes
in the subtree under each node. The best corresponding node(s) and
nodes with no similarity were highlighted. Figure 10 shows a compar-
ison of two trees containing different versions of a carnivore hierarchy.
The node “dog” has been selected by a user in the left tree. The best
corresponding node “dog” in the right tree is highlighted in yellow,
whereas nodes with no similarity are highlighted in red. Nodes in blue
are not highlighted in the right tree as they contain the node “dog”
(yellow) in their subtree and are therefore “somewhat similar.”

Fig. 10. Tree Comparison of two different versions of a carnivore data
set. Left: The node “dog” has been selected for comparison. Right:
The node “dog” is highlighted in yellow as the best corresponding node.
Nodes in red have no correspondence with the node “dog.”

Trees in our system can be compared by moving their visualization
planes close to one another. When planes are close enough for com-
parison the borders are highlighted and nodes can be selected to start
a similarity calculation. In Figure 11, we show two planes on the left
in comparison mode (orange border) and a smaller tree to the side that
is not currently compared. Any number of trees can be compared by
moving them close to others that are already being compared.

5.3 Solving Collaborative Tree Comparison Tasks
To gain an overview of the available information, each visualization
plane can be arranged to facilitate a comparison between all available
datasets. In Figure 12 two users of our system created a compari-
son overview by organizing their planes to facilitate cross-comparison.



Fig. 11. Trees can be compared when their planes are in close proximity.
Here the two planes on the left are in comparison mode as can be seen
by the highlighted (orange) border. The tree on the right is not currently
compared with the others.

Figure 13 shows a close-up screenshot of such a comparison. The mid-
dle two planes show the main IM and ABC protein representation. The
root node of the ABC protein (top row) has been highlighted (green).
The two trees on the left, the alternative versions of the IM protein,
and the IM protein tree show only dissimilar nodes to the ABC protein
(in red). However, the alternative versions of the ABC proteins both
show a few dissimilar nodes that need to be inspected further.

Fig. 12. All six datasets have been moved together to facilitate a com-
parison across all representations.

Fig. 13. Screenshot of the system showing all six trees. The root node
of the ABC protein in the top center plane has been highlighted.

This more detailed investigation within the versions of the ABC and
IM protein was performed in parallel. The left of Figure 14 shows two
collaborators who have decided to each investigate one of the proteins.
To inspect which nodes have dissimilar values, they have chosen to
annotate the dissimilar nodes first and to then examine the nodes and
their structure in the hierarchy in more detail. However, closer ex-
amination of nodes can also be performed in joint work as shown in
Figure 14 (right).

A contest task required the examination of the hierarchical struc-
ture in terms of whether subtrees moved in the hierarchies or nodes
changed position. To facilitate a structural comparison of nodes in this
sense, trees in our system can be overlaid and then examined. All vi-
sualization planes are semi-transparent in order to support this type of

Fig. 14. Closer examination of a few trees. Left: Parallel work with each
person comparing three trees each. Right: Joint work comparing four
trees together.

tree comparison. Figure 15 gives two examples of structural compari-
son through overlay. The top image shows an overlay of Protein ABC
(blue) and Protein IM (magenta). It can be seen that Protein ABC is
generally more shallow than Protein IM but has one main subtree that
is wider and deeper than can be found in the other tree. In the bottom
image, two users overlaid their exploration history including annota-
tions of similar trees. Similar and dissimilar nodes are highlighted.
We are considering options to auto-rotate planes to show the best pos-
sible match.

Fig. 15. Structural comparison through overlay.

6 CONCLUSION

In this paper we have provided guidelines for the design of co-located
collaborative information visualization systems. We have applied
these guidelines in the creation of a system for collaborative tree com-
parison tasks and have shown how such tasks can be solved in a collab-
orative fashion using our system. So far, most information visualiza-
tion systems have been designed with a single user in mind. How, or
whether, interfaces, visualizations, and interaction techniques should
be designed to specifically address the needs and requirements for
teams of individuals analyzing data still needs to be further explored.
In this paper we have contributed to the evolving knowledge about the
design of such systems. Our guidelines have been derived from gen-
eral information visualization design advice, co-located collaboration
advice, the few studies that look directly at collaborative visualization,
and our observations of teams of people working together to solve
tasks using information visualizations. As our collaborative system is
evaluated and developed further, and as other researchers contribute
to the development of collaborative information visualization systems,
we expect these guidelines to be extended.
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An Exploratory Study of Visual Information Analysis
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ABSTRACT
To design information visualization tools for collaborative
use, we need to understand how teams engage with visualiza-
tions in their analysis process. We report on an exploratory
study of groups of individuals, pairs, and groups of three en-
gaged in visual information analysis tasks using paper-based
(static) visualizations. From the analysis of our study, we
derive a framework that captures the analysis activities of
co-located teams and individuals. We present a comparative
analysis of this framework with existing models of of the in-
formation analysis process, which suggests that information
visualization tools may benefit from providing a flexible tem-
poral flow of analysis actions.
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INTRODUCTION
Interactive information visualization tools are often the cen-
ter of many complex information analysis tasks [16]. In ev-
eryday practice, data is frequently interpreted and analyzed
not only by individuals but by teams of individuals working
in concert to make decisions. While many researchers have
explored the information analysis process (e. g. [3, 5, 12]),
little has emerged on the nature of this process in a collab-
orative context [6, 8]. How a single doctor would analyze
biomedical visualizations, for example, might differ from
how a team of doctors might analyze the same data. If teams
make use of visual information to solve problems differently
than individuals, we need to understand what these differ-
ences are so we can redesign infovis tools to support their ac-
tivity. To address this problem, we designed an exploratory
study to understand the flow and nature of this collaborative
process and its relation to individual analysis practices. To
derive practical guidelines for information visualization tool
design, we focused on analyzing how participants engage
with the workspace and their collaborators. Teams in our
study were given paper-based (static) visualizations to solve

tasks, allowing us to view their process independently of the
confounds of a specific infovis system. The analytic frame-
work that we have derived from our observations allows us
to deconstruct and understand this visual information anal-
ysis process for the purpose of design, heuristic evaluation,
and analysis of information visualization tools.

Our work makes primarily three contributions: first, we pres-
ent an exploratory study aimed to examine the information
analysis process for individuals and small groups in the con-
text of visual data; second, we present an analytic framework
that allows researchers to understand this analysis process
in other contexts, and finally, we provide three concrete de-
sign implications for digital information visualization tools
derived from our findings.

BACKGROUND AND RELATED WORK
Since our research study shows individuals and teams solve
information tasks using simple visual representations of their
data and results in an information processing framework, it
particularly relates to previous studies that have also resulted
in information processing frameworks. Next, we outline re-
search that articulates an information visualization process
or the process through which a person extracts insight from
a dataset given a problem and visualization tool. Then, we
describe other studies that are related in that they also con-
sider team work and more general information handling.

Collaborative Visual Information Processing
Both Park et al.’s study of pairs using distributed CAVE en-
vironments [8], and Mark et al.’s study also of pairs but us-
ing a shared information visualization software tool [6] have
resulted in similar but not identical information processing
frameworks. These two studies are most related to ours but
our study differs in that by studying non-digital information
processing our framework does not reflect the processing
constraints built into existing software. A detailed compari-
son of these frameworks with ours is included in the discus-
sion section.

Without the benefit of associated studies, several other re-
searchers have also modeled a user’s involvement in visual
information processing as an iterative sequence of compo-
nents; however, each model is unique in terms of its focus,
and how it abstracts the process. These models have focused
on individuals’ use of visualizations—only recently have re-
searchers shifted their focus toward how teams use visualiza-
tions together.



One perspective has been concerned specifically with the de-
sign of digital information visualization tools, focusing on
how users manipulate view and visualization transformation
parameters, e. g., [4, 5]. Jankun-Kelly et al. propose a model
of visual exploration for analyzing a user’s interaction with a
digital visualization system [5]. The key insight of this work
is that a fundamental operation in the visual exploration pro-
cess is the manipulation of visualization parameters. This
model is effective in capturing the temporal aspects of vi-
sual parameter manipulation; however, it does not capture
the higher-level semantics of a user’s interaction (i. e., why
did the user change that parameter). Chi and Riedl’s model
[4] addresses these semantics, basing their semantic operator
framework on users’ intention of action (i. e., view filtering
vs. value filtering), classifying and organizing operators in
the analysis process.

At the other end of the spectrum, Amar and Stasko name
higher-level analytic activities that users of a visualization
system would typically perform, such as complex decision-
making, learning a domain, identifying the nature of trends,
and predicting the future [1]. Shneiderman outlines a two-
step process (from overview to detail), that addresses a task-
centric perspective on the analysis process. He names seven
operations that information visualization tools should sup-
port to facilitate the problem solving process: overview, zoom,
filter, details-on-demand, relate, history, and extract [11]. Sim-
ilarly, a model by Russell et al., derived from studying col-
laborative information consolidation activities, describes a
“Learning Loop Complex” [9], a cyclic process of search-
ing for representations and encoding information. Indirectly,
these observations have led to Card et al.’s sense making cy-
cle [3] (extended in [16]). While models from this latter per-
spective are more closely related to our processes, most have
a stronger cognitive focus. We will later revisit the sense-
making cycle by Card et al. [3] as it shared some processes
defined in our framework.

In contrast to these two main perspectives we are interested
in the general processes that occur during analysis (inde-
pendent of the confines of a computer-based infovis tool),
as well as the interactions with visualizations and those be-
tween team members during collaborative information anal-
ysis. We are interested in general processes that form the
basis of collaborative information visualization as the low-
level mechanics of interacting with an infovis tool are prob-
ably not indicative of how teams would solve a visual infor-
mation problem.

Choosing a Methodology
When developing software tools to augment work practices,
at least three fundamentally different approaches exist. One
is to study possible improvements for support of the process
through studying the current software support or tools in use.
Another is to hypothesize about improvements in existing
tools, develop a promising tool and study it in comparison to
the existing tools. A third is to work towards an improved un-
derstanding of the process in order to develop a better match
between natural human process and its software support.

Our approach falls into the latter class, and begins with the

premise that through observations of users’ interactions with
physical artefacts, we can develop a richer understanding
of basic processes that can be used to inform interface de-
sign. Other researchers (e.g. [10, 15]) have taken this ap-
proach, studying how groups accomplish tasks in non-digital
contexts in order to understand what activities digital tools
should support. The reasoning behind this choice is that
users’ physical interactions with these familiar artefacts and
tools would closely reflect how they understand and think
about the problem at hand. For instance, Tang’s study of
group design activities around shared tabletop workspaces
revealed the importance of gestures and the workspace it-
self in mediating and coordinating collaborative work [15].
Similarly, Scott et al. studied traditional tabletop gameplay
and collaborative design, specifically focusing on the use of
tabletop space, and the sharing of items on the table [10].
While these authors studied traditional, physical contexts, ul-
timately their goal was to understand how to design digital
tabletop tools. Both of these studies contributed to a better
understanding of collaborative work practices involving ta-
bles in general.

The approach taken in these two studies works well when
addressing a design area where the critical issues are poorly
understood. For instance, we are uncertain how groups will
work together with information visualization if given the abil-
ity to do so freely (e.g. prior efforts involved systems where
individuals could not work in parallel [8] [6]). Furthermore,
we do not know how teams will share and make use of inter-
mediate results, or indeed whether they will even share and
work together from the same views or artefacts of the data.

Our work builds on efforts of prior researchers in develop-
ing frameworks to understand the visual information analy-
sis process, and the work of researchers attempting to under-
stand collaborative behaviour. The study we describe here
takes a tentative first step toward building our understanding
of collaborative visual information analysis. We can then
leverage this understanding to build infovis tools to support
collaboration.

A STUDY OF THE INFORMATION ANALYSIS PROCESS
We conducted an exploratory study to understand the visual
analysis process. The study focused on examining how pro-
cesses differed between individuals and small groups (pairs
and groups of three).

Participants
We recruited 24 paid participants from the university popula-
tion, 14 female, 10 male, primarily from science, arts, social
sciences, and business. The mean age of the participants
was 26 years. We had 4 groups each of singles, pairs, and
triples. With one exception, all pairs and triples were known
to each other before hand and did similar data analysis tasks
at least as frequently as yearly. For group construction seen
Figure 1.

Apparatus
Participants worked on a large table (90 × 150 cm) and were
given 15 × 10 cm cards each showing one data chart. The ta-
ble was covered with a large paper sheet, and several pens,



Scenario Task Type
C 1) Give a short description of the participants’ characteristics. open
(Cereal) 2) Who should each breakfast option be advertised to? open

3) Do more females prefer oatmeal than active people prefer cereal. focused
4) Do more inactive people prefer oatmeal than people over 60? Do you think there might be a relationship
between lifestyle and age in terms of preference for oatmeal?

focused

B 1) Find pairs of behaviours that have similar ratings in at least three different situations. open
(Behaviour) 2) Choose three situations and describe behaviours most appropriate for that situation. open

3) Find two situations that have at least five behaviours with similar ratings. open
4) Is it more appropriate to argue or belch in a park? focused
5) Where was it most appropriate to laugh. focused
6) What behaviour in which situation was most appropriate and which was most inappropriate. focused

Table 1: Study questions and type per scenario.

Figure 1: Participants’ gender, chart familiarity, and data
analysis frequency.

pencils, rulers, erasers, scissors, and sticky notes were pro-
vided. Six different types of charts were used. These charts
showed different subsets of the data and each data subset
was shown in at least two different representations (e. g., line
chart and bar chart). Figure 2 gives an overview of the charts
used and shows that how many participants reported them-
selves to be unfamiliar with a given chart; however, even,
though some participants were unfamiliar with certain charts
no participant reported to be unfamiliar with a chart whose
data was not redundantly encoded with another chart famil-
iar to him/her.

Figure 2: Unfamiliarity of participants with charts in the
study.

Tasks
Participants worked on two task scenarios each composed of
a different data set with its own representations. The data
sets used in the study are part of the sample files provided
with the analysis software SPSS 14.0. The behaviour data
set (Scenario B, behavior.sav in SPSS) included 32 charts
(1 stacked area, 1 line, 15 scatter plots, 15 bar charts). The
data shown in these charts was about ratings for the appro-
priateness of 15 behaviours in 15 different situations (e. g.,

running in church). The cereal data set (Scenario C, ce-
real.sav in SPSS) which included 30 charts (3 pie, 9 bar,
9 stacked bar, 9 line charts) was about an imagined study
of preferences for certain breakfast options. The presenta-
tion order of these scenarios was counter balanced between
groups. Similar to the design used in [6], our scenarios
each contained an equal number of open discovery tasks,
where tasks could have several possible solutions, and fo-
cused question tasks which had only one correct answer. Ta-
ble 1 gives an overview of the study tasks.

Procedure
Participants were greeted and then seated themselves around
the table. Next a short tutorial was provided on the types of
charts, tasks, and scenarios used in the study. Participants
were told that they could use any of the tools (pens, rulers,
etc.) to work with the charts, and that they could write on
anything as they saw fit (e. g., cards, scrap paper, table, etc.).
Participants were then given an example task scenario to clar-
ify the process. Once it was clear how to proceed, each
task scenario was given in turn, and the participants were
instructed to work on the tasks in any way they felt com-
fortable. Upon completing both task scenarios, participants
filled out a questionnaire asking about their experiences dur-
ing the study and to collect demographic information. The
groups of two and three participants naturally discussed their
tasks and progress and single participants were asked to use
a talk aloud protocol.

Data Collection and Analysis
During each session two observers were always present. Both
observers collected notes, and each session was video or au-
dio taped. 610 minutes of video data was collected (≈50
minutes for each session). Our multi-pass open coding anal-
ysis was based on both the collected notes and the video data.
Notes were used to form initial coding categories which were
used for the first video coding pass and were refined through
subsequent study of the videos and the second coding pass.
This process, similar to that used in [15, 10], provides a
rich understanding of the information processing and ana-
lytic activities within groups, of the similarities and differ-
ence across groups and of the unique character of each group.

FINDINGS
In this section, we outline our understanding of the collabo-
rative and individual visual analysis process as revealed dur-



ing our analysis. We follow this by illustrating how the pro-
cesses themselves were not temporally organized in a con-
sistent way across groups, suggesting that information visu-
alization tools should consider supporting this flexibility. In
the next section, we relate these findings to prior work, and
discuss how they can inform the design of information visu-
alization tools.

Processes in Visual Information Analysis
Our analysis revealed eight processes common to how partic-
ipants completed the tasks in our study: browse, parse, dis-
cuss collaboration style, establish task strategy, clarify data,
operate on data, select data, and validate findings (summa-
rized in Table 2). We describe each process using examples
drawn from our study, discussing participants’ interactions
with one another and the workspace and elaborate on how
the processes differed between group types. Where average
process times are reported these need to be read as an accu-
mulation of several instances of particular processes during
both scenarios.

Browse:
The browsing process comprised activities involving scan-
ning through data to get a feel for the available information.
Browsing activities did not involve a specific search-related
to a task; instead, the main goal appeared to be to gain some
understanding of the data set. For example, we observed
participants quickly glancing through or scanning the infor-
mation artefacts—likely to see what types of charts were
available and the variables in the charts. Five participants
took the complete pile of charts and flipped through them in
their hands, while eleven others created an elaborate layout
of cards on the table. Figure 3 shows an example in which
two participants use two very different browsing strategies.
One participant (bottom of image) lays the two overview
charts out in front of him, flipping through the remaining
cards in his hand, while the other participant creates a small-
multiples overview of the cards on the table as he browses
through them one at a time. Groups were slightly more ef-
ficient than individuals (average browsing times were ≈30s
for groups, and≈60s for individuals), perhaps indicating for
individuals, having a completely clear sense of the data is
more important, whereas groups can rely on others. In one
case, we observed one participant in a group of three who did
not “browse” through the data himself; instead, he watched
as his partners laid their cards out on the table.

Parse:
The parsing process captures the reading or re-reading of the
task description in an attempt to understand how to solve the
problem. Participants read the task description both quietly
or aloud, and in teams, this choice reflected the collabora-
tion style that teams adopted: for instance, teams working
closely together would read task descriptions aloud, facilitat-
ing joint awareness of the state of the activity, and discussion
of how to interpret the question. These readings would some-
times result in a rephrasing of the question or note-taking of
required variables. On average, groups spent 2.5 min read-
ing and re-reading the task description, regardless of the size
of the group; however, individuals referred to the task sheet

(a) Start of a browsing session. (b) End of a browsing session.

Figure 3: Different browsing strategies: the participant on
the right creates an overview layout; the participant on the
bottom laid out the overview charts and is flipping through
the remaining data charts in his hands.

more frequently (10 times vs. 9 times for pairs and 7 times
for triples).

While many real-world information analysis scenarios may
not have a concrete problem description sheet, an assessment
of the given problem(s) and the required variables can cer-
tainly still occur and would be considered part of this pro-
cess. The problem sheet can be seen as external textual in-
formation that is not part of the current dataset but provides
meta information on the problem, tasks, or data.

Discuss Collaboration Style:
Many teams explicitly discussed their overall task division
strategy. We observed several collaboration strategies rang-
ing from completely independent to closely coupled work:

• Complete task division. Participants divided tasks between
themselves so that they would not duplicate work. Each
participant worked alone with his or her information arte-
facts on a pre-specified subset of the problems. Results
would then be combined at the end without much further
group validation.

• Independent, parallel work. Participants worked on each
task independently, but at the same time. When one par-
ticipant had found an answer, solution and approach were
compared and discussed with the group. Other participants
might then validate the solution by retracing the approach
with their own artefacts, or by carefully examining the part-
ner’s information artefacts.

• Joint work. Participants talked early about strategies on
how to solve the task, and then participants went on to
work closely together (conversing and providing assistance)
using primarily their own or shared information artefacts.
When one person found a solution, information artefacts
were shared and solutions were validated together.

Interestingly, while teams might explicitly discuss a collabo-
ration style, all eight teams changed their collaboration strat-
egy midway through a task scenario or between scenarios.
A combination of parallel and joint work strategies was used
by six teams and two others used a combination of task di-
vision/parallel and task division/joint work. Six of the eight
teams started with a loose definition of doing the tasks “to-
gether.” Strategy discussions were typically very short: ≈2
min on average per scenario. Most of the changes in task



Process Description Goal

Browse scanning through the data get a feel for the available information
Parse reading and interpretation of the task description determine required variables for the task
Discuss Collaboration Style discuss task division strategy determine how to solve the tasks as a team
Establish Task Strategy establish how to solve a task with given data & tools find an efficient way to solve the problem
Clarify understand a visualization avoid mis-interpretation of the data
Select pick out visualizations relevant to a particular task minimize the number of visualizations to read
Operate higher-level cognitive work on specific data view solve task or sub-task
Validate confirm a partial or complete solution to a task avoid errors in completing the task

Table 2: The eight processes in information analysis. “Discuss Collaboration Style” only applies to collaborative analysis scenarios.

strategy were quite seamless, and did not require any formal
re-negotiation. This is echoed in the post-session question-
naire in which two participants reported to have chosen their
strategy “intuitively” and “by chance.” In general, teams
showed a strong tendency for parallel work: all eight groups
solved at least parts of one scenario in parallel. 14 of 15
participants reported that the main reason they divided tasks
this way was for perceived efficiency.

Establish Task Strategy:
In this process, participants searched for the best way to
solve a specific task using the given data and tools. The
goal of establishing such a strategy was to determine the
next views or interactions required to extract variables or
patterns from the data to solve the problem efficiently. As
a team activity, this discussion occurred often with the help
of individual information artefacts. On many occasions, one
participant would present a possible approach to the other
participant(s) using examples. For example, Figure 4 illus-
trates an instance where two participants are discussing how
to solve a particular task using a specific chart they had cho-
sen. The team frequently flipped between looking at a shared
chart and the chart in their own hand. This explicit strat-
egy discussion was more common when teams worked in
a joint work collaboration style. When participants worked
independently or in parallel, the determination of strategy
seemed to occur silently (perhaps in parallel to the parsing
process). For instance, participants might articulate their
strategies without discussing the explicit reasoning for it: “I
am now going to look for the highest peak.” During the
video analysis, we only observed on average 1-2 minutes per
scenario in which teams specifically discussed their strategy
to solve a task.

At the end of this process, depending on the chosen strategy,
participants often reorganized their information artefacts in
the space to create an adequate starting position for solving
the task. For example, if the strategy was to find two data
charts, then the workspace might be organized to facilitate
the finding of these two data charts (as in Figure 3).

Clarify:
Clarification activities involve efforts to understand an in-
formation artefact. While we provided users common bar,
pie, and line charts, we also provided less commonly used
stacked bar charts and an area chart. The unfamiliar charts
required more careful scrutiny by participants. For individ-
ual participants, ambiguities in the data display were often
resolved using other charts as aids, by re-reading parts of the

Figure 4: Discussing a strategy on how to solve a task using
the chosen chart. Information artefacts are used as aids.

scenario or task descriptions, through annotations on infor-
mation artefacts, and in one case, the drawing of example
diagrams. In teams, the need for clarification additionally
involved discussion with other participants to decipher and
understand the charts and sharing of information artefacts.
Overall clarification required less than 1min for Scenario B
and no clarification was required for Scenario C. The clar-
ification times for Scenario B were higher for all groups
as this scenario contained the most unfamiliar stacked area
chart. Only those triples that included participants which
were unfamiliar with certain charts required longer than av-
erage (1min, 2min) for clarification in Scenario B.

Select:
Selection activities involved finding and picking out infor-
mation artefacts relevant to a particular task. We observed
several different forms of selection, often dependent on the
organization of data that was established during browsing.
We characterized these styles of selection by how artefacts
were spatially separated from one another:

• Selection from an overview layout. Beginning with an
overview layout (e. g., small-multiples overview from Fig-
ure 3), relevant cards are picked out. Selection of cards
from this layout involved either a re-arrangement of the
organization scheme so that relevant cards were placed
within close proximity or marking by either placing hands
or fingers on the cards, or using pens.

• Selection from a categorization layout. Beginning from
a pile-based categorization of information artefacts, piles
are scanned and relevant cards are picked out. These cards
are then placed in new piles that carry semantic meaning
(e. g., relevant, irrelevant, . . . ). Previously existing piles
might change their meaning, location, and structure in the
process.

How users organized these selected data cards was depen-
dent on how they intended to operate on (or use) them. The



left of Figure 5 illustrates an instance where two cards to be
compared were relocated and placed side-by-side. The right
of Figure 5 shows an example where a variable was to be
measured, so the card was relocated closer in the individual
person’s workspace. Frequently, the spatial organization of
cards relative to piles of data in the workspace carried seman-
tic meaning. For example, when an operation on a data card
was to be brief, a single card was drawn out, operated upon,
and then replaced. Similarly, the organization scheme might
reflect the perceived importance of a set of cards: at times,
we observed piles of information artefacts that were clearly
discarded (Figure 6). Temporally, we also observed differ-
ent selection strategies, which could be loosely classified as
“depth-first” or “breadth-first.” A “depth-first” approach in-
volved selecting a single card, operating on it for a period of
time, and then selecting the next card (e. g., Figure 6, left).
“Breadth-first” strategies selected all cards deemed relevant
in a single pass and then operated on them afterwards (see
Figure 6, right). On average participants spent ≈ 4min se-
lecting data, the second most common process in our study.

Figure 5: Chart organization during selection depending on
their intended usage. Left: a participant selected four cards
for comparison placing them side by side in her hand. Right:
three participants selected individual charts and placed them
in the center of their workspace to measure a specific value.

Figure 6: Changing categorization during selection. Left: a
participant placed irrelevant cards to her left and picks single
cards to operate on from the working set. Right: a participant
picked out relevant cards, placed them close to himself, and
put irrelevant cards in a pile further away.

Operate:
Operation activities involved higher-level cognitive work on
a specific view of the data with the goal of extracting infor-
mation from the view to solve the task. Figure 7 illustrates
the two most common types of operation activities: extract-
ing a data value, and comparing data values. To extract a
data value from a card, participants often used rulers or some
other form of measuring tool (e. g., edge of a piece of paper).
To aid recall of these values, participants often made annota-
tions: sometimes on the charts themselves, and other times

on spare pieces of papers. During the course of both scenar-
ios each participant on average annotated at least three infor-
mation artefacts (2 during Scenario B, 1 during Scenario C).
Every participant in our study compared charts on at least
one occasion. The most frequent comparison involved just
two charts but we also noted 15 occasions of participants
comparing three or more charts. In our study, participants
arranged the charts for a comparison during selection: cards
would be placed in close proximity to facilitate easier read-
ing of either individual values or patterns (Figure 6). Partic-
ipants were quite creative in their use of tools to aid com-
parison: marking individual values, bending or cutting indi-
vidual charts (to facilitate placing values physically side-by-
side), or on 7 occasions we noted overlaying of charts atop
one another in an attempt to see through the top chart. The
operation process typically generated a set of results, which
were synthesized with previous results and/or written down.
During team activity, results were sometimes reported to the
team if other tasks depended on these results (e. g., during
joint activity). Operation was the most time-consuming ac-
tivity in our study. On average participants spent almost half
of their time (11 minutes) on operations per scenario. For all
groups and scenarios operations most frequently followed a
selection process.

Figure 7: Two participants showing two different types of
operations on the information. The participant on the right
is comparing two cards using a ruler while the participant on
the top is measuring a particular value.

Validate:
Validation activities involved confirming a partial or com-
plete solution to a task. Beyond confirming the correctness
of a solution, teams also ensured the correctness of the pro-
cess or approach that was taken. In teams, the validation
process often included discussion coupled with sharing of
information artefacts: some participants validated others’ so-
lutions by looking carefully at the solution (in terms of the
information artefacts), while others validated the solution
by using their own information artefacts (i. e., the process
or approach was shared instead of the artefacts themselves).
When working more independently, the validation process
only involved the presentation of a solution by the group
member who had found the solution. In groups where collab-
orators worked more closely, the collaborators would often
ensure that the other participants had understood the process
with which a solution was found. For individual participants,
the validation process involved looking at other data cards
(i. e., different representations) for the same answer. Of inter-
est is that individuals appear to be concerned about the “cor-
rectness” of their solution/approach based on other informa-



tion artefacts, while teams also rely on a collective validation
from the social group. On average groups of three spent the
longest time validating their answers (≈ 3min), pairs spent≈
2min validating, and individuals spent less than one minute
validating their answers.

Temporal “Sequence” of Processes
To understand how the processes related to one another in
terms of a temporal relationship, we analyzed the video data
from our study, coding each individual’s activities using these
process labels. This analysis revealed three aspects of partic-
ipants’ activity: first, while certain processes frequently oc-
curred before others (e. g., select most frequently appeared
before operate), no common overall pattern appeared; sec-
ond, individuals varied in how they approached each task,
and finally, teams also varied drastically in how they spent
their time. For brevity, we present a few example charts. All
charts for singles, pairs, and triples exhibit this same extreme
variability of approach.

Figure 8: Temporal sequence of processes for three pairs dur-
ing one complete scenario.

Figure 8 shows the coded temporal sequence of analytic pro-
cesses during Scenario B for three pairs. Notice how the
sequence of processes was quite different for each pair, even
though participants worked on the same tasks using the same
tools, representations, and views of the data. Even within
teams participants did not show the same temporal occur-
rences of processes. On average participants in pairs were
concurrently working in the same process for ≈ 70% of the
time. For Scenario B (Figure 8), P2 has a 65% co-occurrence
of the same processes, P3 80%, and P4 69%. This reflects
the collaboration strategies participants had chosen. P3 had
switched from a complete task division to joint work in this
scenario while P2 and P4 were working mostly in parallel.
Participants in groups of three only showed a 40% co-occu-
rence of processes on average.

In Figure 8, Tasks 1–3 were open discovery tasks and Tasks 4–
6 were focused question tasks. We noticed that both individu-
als and teams solved focused question problems quicker than
open discovery tasks. Teams had a better understanding of
the tasks (established during the task strategy process) and
solved them (both focused and open discovery tasks) more
correctly. This result echoes findings in [6] that suggest that
groups perform more accurately, albeit slower. Of course,
teams also exhibit establishing a task strategy more so than
individuals, again in order to establish common ground, or
to ensure a correct or agreed-upon approach.

Figure 9 shows a detail view of a specific task, charting in-
dividual participants and three of the participant pairs. No-
tice that even for a single task occurring over a roughly five
minute sequence, how the participants engaged in the task,
and the temporal distribution of process time varied.

Figure 9: Temporal sequence of processes for one open dis-
covery task. The top row shows timelines for individual par-
ticipants (S1–S4). The bottom row holds timelines for partici-
pants in groups of two (P2–P4).

DISCUSSION
To this point, we have introduced a set of processes that oc-
cur within the context of collaborative and individual visual
information analysis. These processes apparent from our
study form an eight-process framework. The framework is
unique from prior work in that it provides an understanding
of how teams and individuals use information artefacts in the
workspace to solve visual information analysis tasks and of
how team members engage with each other during this pro-
cess. In this section, we discuss how our framework relates
to other information analysis/information visualization mod-
els. This discussion reveals that while individual processes
relate closely to existing models, our temporal analysis sug-
gests that with appropriate tools, both the collaborative and
individual information analysis processes may naturally be
more fluid and benefit from temporal flexibility.

Comparing Frameworks

Comparison with the Sense-Making Cycle
Card et al. [3, pp. 10] provide a high-level model of human
activity called the “knowledge crystallization” or “sense-mak-
ing cycle” where the goal is to gain insights from data rela-
tive to some task. This model includes five main compo-
nents: foraging for data, searching for a schema (or repre-
sentational framework), instantiating a schema, problem
solving, and authoring, deciding or acting. It builds on
work by Russell et al.[9] which involved observations of



collaborative work and an extension can be found in [16].
Spence [12] extends this model by specifically exploring the
“foraging for data” component in terms of visual navigation.
In particular, he relates visual navigation to cognitive activi-
ties (such as internal model formation and information inter-
pretation), thereby arguing that how users can navigate, ex-
plore, and visualize a data space will shape how users think
about the data.

The Sense-Making has several components related to our
model. It outlines a process called “foraging for data” that
includes our browse process. Spence distinguishes three dif-
ferent browsing activities [13]: exploratory browsing where
the goal is to accumulate an internal model of part of the
viewable scene; opportunistic browsing to see what is there
rather than to model what is seen; and involuntary brows-
ing which is undirected or unconscious. We primarily ob-
served exploratory browsing, and saw that as part of this pro-
cess, participants established a layout of cards, or put cards
in observable categories (e. g., by variables or graph types).
It seemed that those participants that created a specific lay-
out of cards in their work area created a type of overview
by imposing an organization (even if a loose one) on the in-
formation artefacts. Thus, we saw a physical manifestation
of the creation of an “internal model of the data.” Further-
more, these physical layouts (a consequence of the browsing
phase) clearly relate to Shneiderman’s “overview” task [11].

“Search for schema” seems to involve activities that we char-
acterize as being a part of parsing, specifically the identifi-
cation of attributes on which to operate later. The activity
of identifying attributes to look for in the data described in
this model is augmented in our parse component by addi-
tional activities of discussion, and note taking found during
our study.

In Card et al.’s model “search for a schema” and “instanti-
ate schema” involve activities that help in the search for the
best way to solve the given problem with the provided visual-
ization tool and therefore relate to our task strategy process,
albeit being more tool-centered than our definition.

Clarification is not an explicit component in this model but
the need for clarification would typically arise during the
searching for and instantiating a schema components. Our
selection process is most closely related to the foraging for
data component but can extend into the searching for and
instantiating a schema components when participants have
ended their browsing activities and are ready to select spe-
cific information important to solving the task. This models
include activities that we see as part of an operation process:
problem-solving, including Bertin’s three levels of reading:
read fact, read compare, read pattern [2]. Validation is not
directly represented in Card et al.’s model [3]; perhaps, as
we have also observed, because validation seemed to be of-
ten omitted or quite brief for individual participants and their
model focuses on a single user.

The sense-making cycle is the most highly coupled and in-
teractive of the three models we are comparing to. However,
it makes a strong temporal (cyclical) suggestion but does

allow for loops within this cycle over defined forward and
backward connections between individual components. In
general, the sense-making cycle is not identical to our model
but predicts some of our findings in terms of temporal flexi-
bility and shares some components with our model.

Collaborative Analysis Models
In studying pairs using distributed CAVE environments, Park
et al. articulate a five-stage pattern of behaviour: problem
interpretation, agreement on vis tool to use, search for a
trend, discovery reporting, and negotiation of discoveries
[8]. Mark et al. also provide a five-stage collaborative infor-
mation visualization model: parse question, map 1 vari-
able to program, finding correct visualization, validating
the visualization, and validation of the entire answer [6].
A loop is included for additional variables from stages four
back to stage two. The temporal sequence of stages in this
model was derived from a study of pairs solving both free
data discovery and focused question tasks in both distributed
and co-located settings. These two models share some sim-
ilarities, but are clearly not identical. A possible explana-
tion for the disparity is that Mark et al.’s model [6] focuses
on a context where the pair negotiates exploration through a
shared tool (i. e., they could not work in a decoupled fashion
[14]) whereas Park et al.’s model [8] allows for more loosely
coupled work.

Both models share some similarity in the processes discov-
ered in our study. Our parsing process relates closely to
Mark et al.’s parse question [6] and Park et al.’s problem in-
terpretation [8] stages. We augment these stages with activi-
ties that might not have been part of the specific environment
under study in both models: note taking and frequent discus-
sion about how to interpret a certain task. The discussion of
the collaboration style is not explicitly covered in both mod-
els. However, similar to Park et al.’s study we observed a
strong tendency in all group conditions for participants to do
at least part of the work using their own views and informa-
tion artefacts. Similar differences in work styles for spatially
fixed information visualization tasks (e. g., maps that cover
the whole workspace) have been described in [14], but they
have not been put in a greater context of other processes of
visual analysis. According to Mark et al.’s model, “map 1
variable to program” is closely related to our task strategy
process in that it would also involve a collaborative agree-
ment on the most appropriate visualizations, parameters, or
views to solve the problem [6], like Park et al.’s agreement
on visualization tools to use [8]. However, our description of
this process discusses the activities involved in establishing
a strategy rather than describing it in the context of a specific
tool.

In contexts where new visualizations are introduced, or in-
dividuals are brought in without prior training on particu-
lar visualizations, the need for clarification would be com-
mon. Specifically, beyond providing users with aid in de-
veloping an understanding of a particular visualization, we
would expect individuals to ask for collaborators’ interpreta-
tions of that visualization or interaction technique or to put
their own views and interpretations up for discussion. Con-
sidering clarification as a process of analysis is important



for designing and evaluating visualization tools but it is not
a specific part of the two collaborative analysis models.

Our articulation of the selection process is related to parts of
the activities covered by Mark et al.’s “find correct visualiza-
tion” stage and Park et al.’s “search for trend.” Our descrip-
tion of selection, however, more broadly captures the notion
of picking out important information beyond operations in a
specific visualization system.

“Independent search for a trend including some adjustments
to viewing parameters” and “report discovery” include op-
erations as defined in our model. Operation is not an indi-
vidual stage in Mark et al.’s model but is integrated in the
“find correct visualization” stage [6]. In groups, the valida-
tion stage was much more visible and it is also included in
these two models as the last stage of information analysis
[6, 8]. Mark et al. noticed differences in validation between
the free discovery and focused question tasks; a result that
was echoed in our study. During more open-ended questions,
validation was usually longer and involved more discussion
than for focused tasks.

In general, both these models are related to ours in that they
share some of the processes discovered in our study but are
quite different in their suggestion of a fixed temporal order.

Temporality and Process-Free Tools
Many of the existing models suggest a typical temporal order
of components; however, our analysis of the temporal occur-
rence of the framework processes in our study suggests that
this typical temporal ordering was not evident. We argue
that our finding of a lack of a common temporal ordering
reflects the design of our study; in particular, the stipulation
that participants would use a paper-based “information vi-
sualization” tool along with traditional tools such as pens,
paper and notepaper. Traditional tools have no specific flow
in terms of which tools should be used first or for what pur-
pose (in contrast, typical interactive information visualiza-
tion tools require specific ordering of interactions to get spe-
cific visualization results). As a consequence, we argue that
the processes and interactions we observed with these tradi-
tional tools better reflect the thought and collaborative pro-
cesses. We believe that prior authors’ finding of a common
temporal ordering more likely reflects the use of information
visualization tools with a specific process-flow.

The flexibility afforded by traditional tools allowed individ-
uals to approach tasks differently. As a consequence, they
also allowed groups to transition between multiple stages of
independent and closely coupled work rather than regiment-
ing particular work process.

In summary then, the processes in our analytic framework
map to related models, yet our analysis suggests that the tem-
poral ordering of these components is by no means universal.
In many digital information visualization systems, the flow
of interaction is regimented by structure; in contrast, the use
of traditional tools in our study allowed participants to freely
choose how to approach and solve problems. On this basis,
we believe this analytic framework can be used as a means to

understand information visualization tools: for example, to
asses temporal or procedural work processes that a particular
system might impose.

IMPLICATIONS FOR DESIGN
Most information visualization systems have been designed
for a single user, but co-located collaborative analysis of in-
formation is also common. Until relatively recently people
have had to rely on physical prints of information for co-
located collaborative analysis. The emergence of large, inter-
active displays opens new possibilities for the development
of interfaces to support collaborative analysis using informa-
tion visualizations. In this section, we discuss implications
for the design of single-user and co-located multi-user infor-
mation visualization systems based on our findings.

Support Flexible Temporal Sequence of Work Processes:
Individuals have unique information analysis practices based
on their prior experiences, successes, and failures. These
well-established work practices should be supported by dig-
ital systems. Our study showed that all participants worked
differently in terms of the order and length of individual
work processes they engaged in, suggesting the need for dig-
ital systems to be relatively unrestricting. The temporality of
work processes suggested by previous models of the analytic
process could imply that common information visualization
tools require a specific process-flow. Our study, however,
suggests that users of digital systems may benefit if a flex-
ible order of operations can be performed. Co-located col-
laborative systems, in which more than one user may work
and interact at the same time, should possibly allow group
members to be engaged in different types of processes at the
same time and also allow them to work together adopting the
same processes.

Support Changing Work Strategies:
In group settings, our participants dynamically switched be-
tween closely coupled and more independent work. The
browse, parse, operate, and select processes were most of-
ten done on individual views of the data in a more loosely
coupled fashion. Discussion of collaboration style and estab-
lish task-specific strategy, clarify, and verify often happened
in closer cooperation with the other partner(s) and often in-
cluded shared views of the data. To support these chang-
ing work strategies information visualization tools for co-
located work need to be designed to support individual and
shared views of and interactions on the data. Each collabora-
tor should be able to perform individual operations on these
views unaffected by his or her team members’ actions. How-
ever, the tool should also help to share these individual views
and, thus, provide awareness of one team member’s actions
to the other collaborators. To support individual views of the
data, interaction with the underlying data structures (deletion
of nodes in a tree, change of query parameters, etc.) should
be designed so as to not influence others’ views of the same
data. However, to support shared views of the data, these pre-
vious operations should be transferable to group views, for
example, to combine highlights, annotations, or other parts
of an interaction history.



Support Flexible Workspace Organization:
The organization of information artefacts on the table changed
quite drastically for most of our participants. We observed
that participants had quite distinct individual workspaces on
the table in which they laid out their cards. These workspaces
were quite flexible and would change depending on tasks as
well as, in group settings, on team members’ spatial needs.
This observation is echoed by the studies of collaborative
behavior reported in [10] that call for co-located collabora-
tive systems to provide appropriate functionality in these
personal workspaces (territories). We refer to their paper
for further guidelines of how to support personal territories
for co-located collaborative work.

Participants also seemed to frequently impose categorizations
on data items by organizing them spatially in their workspaces.
During browsing, overview layouts were often created in
which the cards were spread over the whole workspace. Mainly
during selection and at the end of an operation process, in-
formation artefacts were organized in piles in the workspace.
These piles seemed to have inherent categories and varied
greatly in size, lifespan, and semantic. Allowing users to im-
pose a spatial organization of the information artefacts in
the workspace should be considered in the design of infor-
mation visualization systems. These spatial organizations
can help users support their mental model of the available
information. Systems like CoMotion [7] are already taking
a step in this direction but the typical information visualiza-
tion system still relies on a fixed set of windows and controls
that can rarely be changed, piled, or relocated.

CONCLUSION
Several researchers have contributed to creating a theoretical
understanding of how individuals make use of information
visualizations to gain insight into data and solve problems.
In this paper, we have continued our evolving theoretical un-
derstanding of this process by presenting a framework for
visual information analysis. Our framework is based on find-
ings from an observational study that was designed to un-
cover the processes involved in collaborative and individual
activities around information visualizations in a non-digital
setting. We identified eight processes as part of this frame-
work: Browse, Parse, Discuss Collaboration Style, Establish
Task-Specific Strategy, Clarify, Select, Operate, and Validate
and described differences in team and individual work dur-
ing these processes. We have shown how these eight pro-
cesses relate to other models of information analysis, and
provided insights on differences and commonalities between
them. Yet, while others have posited a general temporal flow
of information analysis, our results suggest this temporal
flow may simply reflect an assumption in the design of ex-
isting information visualization tools. Thus, we argue that
designers should allow for individuals’ unique approaches
toward analysis, and support a more flexible temporal flow
of activity. These eight processes can, therefore, be seen as
an analytic framework that has implications for the design,
heuristic evaluation, and analysis of individual and collabora-
tive information visualization systems. In summary, we have

furthered the theoretical understanding of information analy-
sis processes, provided a framework to be considered in the
evaluation and design of collaborative information systems,
and given concrete design implications for digital informa-
tion visualization systems derived from our findings.
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