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Why Visualization

 We are very good at recognizing visual patterns
 We need to see and understand in order to explain, reason, and make decisions

common examples

Crimespotting
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graphs / hierarchies charts maps

—> use of interactive computer-supported visual representations of data [Card et al.99]
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RESEARCH CHALLENGES

in Visualization



Visualization as a Research Field

e Tools for visualization creation
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Visualization as a Research Field

* Tools for visualization creation
* New data encoding techniques

Count of Product by Category and Manufacturer iy’
rth
oo a a a \ ik
. A A a AR 'w %
=58 . . A A
bergen _
e -~ -
| A AR 2 AR
e A 4R W | %
. A A AR ) A B
1 Ippener
d a » AR A L AR
ibbersen
v a A a A A
Y- T e - o | BadSchwaray - ‘ - .

ca. 1990/91 2005



Visualization as a Research Field

e Tools for visualization creation
* New data encoding techniques




Visualization as a Research Field

* Tools for visualization creation

* New data encoding techniques

» Generate empirical knowledge from user studies
* Applications for visual analytlcs support
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Visualization as a Research Field

* Tools for visualization creation

* New data encoding techniques

» Generate empirical knowledge from user studies
» Applications for visual analytics support

» Visualization frameworks, models, and theories

66% | 100%

v N 9
NE * 12¢ \‘

7mps  Gfsurwete  46m "

N

83 - 128

¢ 17.01.25+%

07:30 Aries 20:20

TUE ARRIVICRI 2020

- 85 BPM o

. 1858

10



‘ D14 uo syd Aq
Twv




Data analysis software, simple statistics, ...

-

H o
>x

%)
- a

N =




Tools for experts...
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Positioning in the Visualization Community

Most work in community My work
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Smartwatches

» Smartwatches are data dashboards
* Information design is based on no empirical foundations

» Past research mostly about:
« technical capabilities of smartwatches (sensors, batteries,...)
* interaction techniques, or
* their role in people’s lite




NEW CHALLENGES
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VISUALIZATIONS

Design and Analysis of Visualizations for
Small Display Spaces

DISTINCT GENETIC CLUSTERS OF AFRICAN LOCUST BEAN (PARKIA BIGLOBOSA) IN BURKINA FASO
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WHAT ARE MICRO VISUALIZATIONS?

"micro visualizations are small-scale visualizations”
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WHAT ARE MICRO VISUALIZATIONS?

"micro visualizations are small-scale visualizations that fit into
foveal vision”

. fixation point

Around the fixation point only fmrr to five letters are seen with 100% acuity.
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https://en.wikipedia.org/wiki/Eye_movement_in_readirg



BUT...

It is too early to discuss precise size ranges
The effect of reducing visualizations in size is still too poorly understood
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Still limited evidence



On the Limits of Resolution and Visual Angle
in Visualization

CHRISTOPHER G. HEALEY and AMIT P. SAWANT, North Carolina State University

This article describes a perceptual level-of-detail approach for visualizing data. Properties of a dataset that cannot be resolved in
the current display environment need not be shown, for example, when too few pixels are used to render a data element, or when
the element’s subtended visual angle falls below the acuity limits of our visual system. To identify these situations, we asked:
(1) What type of information can a human user perceive in a particular display environment? (2) Can we design visualizations
that control what they represent relative to these limits? and (3) Is it possible to dynamically update a visualization as the
display environment changes, to continue to effectively utilize our perceptual abilities? To answer these questions, we conducted
controlled experiments that identified the pixel resolution and subtended wisual angle needed to distinguish different values
of luminance, hue, size, and orientation. This information is summarized in a perceptual display hierarchy, a formalization
describing how many pixels—resolution—and how much physical area on a viewer’s retina—uvisual angle—is required for an
element’s visual properties to be readily seen. We demonstrate our theoretical results by visualizing historical elimatology data
from the International Panel for Climate Change.

Categories and Subject Deseriptors: H.1.2 [Models and Principles]: User/Machine Systems—Human information process-
ing; 1.3.3 [Computer Graphics|: Picture/lmage Generation—Viewing algorithms; J.4 [Computer Applications|: Social and
Behavioral Sciences—Psychology

General Terms: Experimentation, Human Factors

Additional Key Words and Phrases: Hue, orientation, luminance, resolution, size, visual acuity, visual angle, visual perception,
visualization

ACM Reference Format:

Healey, C. G. and Sawant, A. P 2012. On the limits of resolution and visual angle in visualization, ACM Trans. Appl. Percept. 9,
4, Article 20 {October 2012), 21 pages.
DOI = 10.1145/2355598.2355603 http:/doi.acm.org/10.1145/2355598.2355603

1. INTRODUCTION

Scientific and information visualization convert large collections of strings and numbers into visual
representations that allow viewers to discover patterns within their data. The focus of this article
is the visualization of a multidimensional dataset containing m data elements and n data attributes,
n = 1. As the size m and the dimensionality n of the dataset increase, so too does the challenge of finding
techniques to display even some of the data in a way that is easy to comprehend [Johnson et al. 2006].
One promising approach to this problem is to apply rules of perception to generate visualizations that

Authors’ addresses: C. G. Healey, Department of Computer Science, 890 Oval Drive #8206, North Carolina State University,
Raleigh, NC 27695-8206; email: healey@csc.nesu.ed; A. P. Sawant, NetApp RTP, Research Triangle Park, NC, 27709.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with eredit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested [rom Publications Depi., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.

(© 2012 ACM 1544-3558/2012/10-ART20 $15.00
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Larger stimuli = faster responses
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Visual Parameters Impacting
Reaction Times on Smartwatches

Kent Lyons
Technicolor Research
175 S. San Antonio Rd. Suite 200, Los Altos, CA 94022
kent.lyons@technicolor.com

ABSTRACT

As anew generation of smartwatches enters the market, one com-
mon use is for displaying information such as notifications. While
some content might warrant immediately interrupting a user, there
is also information that might be important to display yet less ur-
gent. It would be useful to show this content on the watch but not
immediately draw the user’s attention away from their primary task.
In this paper, we investigate how fast three visual parameters draw a
uscr’s attention. In particular, we present data from a smartwaich
user study where we examine the size, frequency, and color of a
visual prompt and the associated impact on reaction time, We find
statistically significant differences for size and frequency where
smaller and slower result in the less immediate reactions. We also
present reaction time distributions that a designer can use to tailor
expected notification response times to match their content.

Keywords

Smartwatch; Notification; Reaction time; User study

Categories and Subject Descriptors

H.5.m. [Information Interfaces and Presentation (e.g. HCI)|:
Miscellaneous

1. INTRODUCTION

Smartwatches are a form of wearable computing being adopted by
the general public with many new products being developed. Many
smartwatches provide a variety of functions by running different
applications in conjunction with a user’s mobile phone. One com-
mon use is to provide notifications of incoming communications or
events, While notifications might be a useful capability, they must
be treated with some caution. As Starner articulates: “user attention
is the scarcest resource for wearable computing™ [15]. If the user is
to be interrupted, it should probably take as little time as possible |1].
However, even a very short interruption at an inopportune moment
might be detrimental as it could divert a user’s attention away from
their primary real world task.

Permission to make digital or hard copics of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
Tor profit or commercial advantage and that copies bear this notice and the Tull citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers o to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissi org.

MabileHICl ' 16, September 06 - 09, 2016, Florence, laly

@ 2016 Copyright beld by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4408-1/16/09. __515.00

DOI: http: //dx.doi.org/10.1145/2935334.2935344

Some approaches to this attention problem include using algo-
rithms to filter and thus reduce the number of notifications or to
model the user to infer when they might be more interruptible [5,
8, 14]. In this paper, we explore a complementary technique. We
believe there are difterent kinds of content that can be shown on a
smartwaltch (or other wearable) that might have differing levels of
urgency similar to ambient displays [10]. Some information needs
10 be attended o immediately such as an incoming phone call. For
other content, it might be better it the user is not interrupted right
away but sees the content in a timely way eventually (like for a social
network update or a new weather forecast). To that end, we investi-
gate how three different visual parameters on a smartwatch might
have different demands on attention and associated user reaction
times.

For example, if a designer or developer wants to very quickly alert
the user and draw their attention to the smartwatch, which visual
cues should they use? And just as importantly, if the designer does
not want to immediately distract the user but wants them to notice
information within a given time window (say within approximately
two minutes), which stimulus should be used? Or from the opposite
perspective, given a combination of visual parameters in a stimulus,
how long should we expect it to take for a user to notice and respond?

This goal leads to our research question: how does manipulating
the parameters of a visual stimulus on a smartwaltch impact visual
attention and therefore user reaction time? We examine three differ-
ent parameters of visual stimuli that can be shown on a smartwatch
(o understand how manipulating those parameters alters how long
it takes a user to notice and respond. In particular, we manipulate
the size, color and frequency of a visual stimulus in a user study
where participants wore a smartwatch as part of their otherwise
daily routine, We measure the time from when a stimulus is pre-
sented to when a participant notices and dismisses it with a touch
on the smartwatch (the reaction time). If we are able to alter this
time, we are further interested in understanding the resulting time
distributions. These distributions can then inform the design process
to intentionally shorten or lengthen the expected reaction time to
match the urgency needs of different types of content shown on the
smartwatch.

2. RELATED WORK

Smartwaltches have a long history in the rescarch domain. For
example, the IBM Linux watch [12, 13] investigated the challenges
of miniaturizing a general purpose computer into a watch form
factor. The eWatch began exploring aspects we are now seeing
in some smartwatches such as the role of sensors on watches for
activity recognition and using the watch for notifications [11].

Wearable notifications have been explored in a variety of user
studies. For example, Ashbrook er al. evaluated the time to react to

(4

3:54PM 3:58PM

(b)

Figure 1: Example stimuli from our study shown on the Samsung
Gear Live. a) is the red 5.0mm condition while b) is the green
2.5mm condition.

participants reacted faster to notifications shown as larger circles
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Sizing the Horizon: The Effects of Chart Size and Layering
on the Graphical Perception of Time Series Visualizations

Jeffrey Heer', Nicholas Kongz, and Maneesh Agrsn‘vala2

! Computer Science Department
Stanford University
Stanford, CA 94305 USA
jheer@ecs.stanford.edu

ABSTRACT

We investigate techniques for visualizing time series data
and evaluate their effect in value comparison tasks. We
compare line charts with horizon graphs—a space-efficient
time series visualization technique—across a range of chart
sizes, measuring the speed and accuracy of subjects’
estimates of value differences between charts. We 1dentify
transition points at which reducing the chart height results
in significantly differing drops in estimation accuracy across
the compared chart types, and we find optimal positions 1n
the speed-accuracy tradeoff curve at which wviewers
performed quickly without attendant drops in accuracy.
Based on these results, we propose approaches for
increasing data density that optimize graphical perception.

Author Keywords
Visualization, graphical perception, time series, line charts,
horizon graphs.

ACM Classification Keywords
H.5.2. Information Interfaces: User Interfaces.

INTRODUCTION

Time series—sets of values changing over time—are one
of the most common forms of recorded data. Time-varying
phenomena are central to many areas of human endeavor
and analysts often need to simultaneously compare a large
number of time series. Examples occur in finance (e.g.,
stock prices, exchange rates), science (e.g., temperatures,
pollution levels, electric potentials), and public policy (e.g.,
crime rates), to name just a few. Accordingly, visualizations
that improve the speed and accuracy with which human
analysts can compare and contrast time-varying data are of
great practical benefit

Effective presentation of multiple time series is an instance
of a larger problem in visualization research: increasing the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee

CHI 2009, April 4-9, 2009, Boston, MA, USA.

Copyright 2009 ACM 978-1-60558-246-7/09/04...85.00.

? Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776 USA
{nkong, maneesh}@cs.berkeley.edu
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Figure 1. {a) Filled line chart. Area between data values on
line and zero is filled in. (b) “Mirrored” chart. Negative
values are flipped and colored red, cutting the chart height
by half. (c) 2-band horizon graph. The chart is divided into
bands and overlaid, again halving the height

amount of data with which human analysts can effectively
work. Toward this aim, researchers and designers have
devised design guidelines and visualization techniques for
making more effective use of display space. Tufte [27]
advises designers to maximize data density (data marks per
chart area) and researchers regularly promote visualization
techniques (e.g., [12, 22, 25]) for their “space-filling”
properties. Such approaches excel at increasing the amount
of information that can be encoded within a display.
However, increased data density does not necessarily imply
improved graphical perception for visualization viewers.

Consider the three time series charts in Figure 1. The first
graph 1s a filled line chart—a line chart with the area
between the data value on the line and zero filled in. The
second graph “mirrors” negative values into the same
region as posttive values, and it relies on hue to
differentiate between the two. The mirror chart doubles the
data density compared to the line chart. The third chart,
called a horizon graph [7], further reduces space use by
dividing the chart into bands and layering the bands to
create a nested form With two layered bands the horizon
graph doubles the data density yet again.

Such increases in data density enable designers to display
more charts in a fixed area and thereby make it easier for
viewers to compare data across multiple charts. Yet,
mirroring negative values, dividing the series into bands,
and layering the bands may also obscure patterns in the data

Type Line Chart
Scale

1-Band Mirrored

1/2 ‘

1/4 A

118 -

2-Band Mirrored

i

AAA

A A A

small chart heights negatively affected
accuracy and speed of data comparison

smaller size had a greater impact on the

filled line charts than on the Horizon
Graphs
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A Study of the Effect of Donut Chart Parameters on Proportion

Estimation Accuracy

X. Cai', K. Efstathiou?, X. Xie!, Y. Wu', Y. Shi%, and L. Yu??

1Zl'lejiamg University, China
2University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science, The Netherlands
3Hzmgzh(:ou Dianzi University, China

Abstract
Pie and donut charts nicely convey the part-whole relationship and they have become the most recognizable chart ypes for
representing proportions in business and data istics. Many experiments have been carried out to study human perception

of the pie chart, while the corresponding aspecits of the donut chart have seldom been tested, even though the donut chart and
the pie chart share several similarities. In this paper we report on a series of experiments in which we explored the effect of a
few fund [ design p s of donut charts, and additional visual cues, on the accuracy of such charts for proportion
estimates. Since mobile devices are becoming the primary devices for casual reading we performed all our experiments on such
device. Moreover, the screen size of mobile devices is limited and it is therefore important to know how such size constraing
affects the proportion accuracy. For this reason, in our first experiment we tested the chart size and we found thar it has no
significant effect on proportion accuracy. In our second experiment, we focused on the effect of the donut chart inner radius and
we found that the proportion accuracy is insensitive lo the inner radius, excepl the case of the thinnest donut chart. In the third
experiment we studied the effect of visual cues and found that marking the center of the donut chart or adding tickmarks at 25%
intervals improves the proportion accuracy. Based on the results of the three experiments we discuss the design of donut charts

and offer suggestions for improving the accuracy of proportion estimates.

1. Introduction

The donut chart is a variant of the pie chart, where a center disk has
been removed and the remaining ring is divided into slices, see Fig. 1.
Both types of charts, donut and pic, nicely convey the part-whole
relationship, and for this reason they are being extensively used for
showing proportions. Despite its prevalence, the pie chart has long
been criticized by information visualization experts. The history of
the pic chart and the debate around its use has been reviewed in,
among others, [Spe03] and [SL91].

Donut charts share several similarities with pie charts and one can
consider the latter as a special case of the former where the inner
radius becomes zero. Compared to pie charts, donut charts have the
advantage that their structure can be adapted to the presentation of
extra information. Some common adaptations are multi-level donut
charts and “sunbursts” [SZ00] supporting the representation of hier-
archical data by using multiple rings, and chord diagrams [KSB*09]
where the hole is used for drawing connections between different
slices. At the same time, donut charts emphasize different visual
encodings compared to pie charts. For example, in pie charts, ex-
plicit information of angle can be leveraged to estimate proportions
while in donut charts angle can be only indirectly inferred. Such

submitied o COMPUTER GRAPHICS Forum (12/2017).

differences mean that study results for pie charts cannot be directly
applied to donut charts.

Many experiments (e.g. [SHR7, SL91]) have been carried out
on human perception of the pie chart, mainly focusing on its ac-
curacy and effectiveness. Studies comparing pie charts to “rectan-
gular” charts (such as bar charts or waffle charts) show that the
former are not inferior to the latter for proportion estimation as
we describe in detail in the review of related work in Sec. 2. How-
ever, “round” charts are perceived differently than “rectangular™
charts [ZK 10a, ZK10b] and hence their use may be preferable in
certain contexts. Moreover, as described in the previous paragraph,
donut charts have advantages that make them suitable for specific
graphical representations.

The aim of the present work is not to compare donut charts to
other chart types but to find out how to improve the proportion
estimation accuracy of donut charts for those cases where the use
of such charts is preferred. We study this question in two, com-
plementary, ways. First, we determine how the two fundamental
design parameters of donut charts (outer and inner radius) affect the
accuracy of proportion estimates. Second, we explore the effect of
additional visual cues on the accuracy so that we can make specific
suggestions on the use of such cues in the design of donut charts. We

Mean absolute error

10.0
8.0

Mean response time

2.8

2.0

1.8

RERRAG
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no clear evidence of a difference
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The Complexity of Micro Visualizations



COMPLEXITY

e External
* Interaction
* Mediated

Complex Interaction

LARS-ERIK JANLERT
Umea University

and

ERIK STOLTERMAN
Indiana University

An almost explosive growth of complexity puts pressure on people in their everyday doings. Dig-
ital artifacts and systems are at the core of this development. How should we handle complex-
ity aspects when designing new interactive devices and systems? In this article we begin an
analysis of interaction complexity. We portray different views of complexity; we explore not only
negative aspects of complexity, but also positive, making a case for the existence of benign com-
plexity. We argue that complex interaction is not necessarily bad, but designers need a deeper
understanding of interaction complexity and need to treat it in a more intentional and thought-
ful way. We examine interaction complexity as it relates to different loci of complexity: inter
nal, external, and mediated complexity. Our purpose with these analytical exercises is to pave
the way for design that is informed by a more focused and precise understanding of interaction
complexity.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-
niques—User interfaces; H.5.2 [Information Interfaces and Presentation]: User Interfaces—
Graphical user interfaces (GUIs)

General Terms: Design

Additional Key Words and Phrases: Interaction complexity, interface design, design approach,
design theory, product design, benign complexity
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1. INTRODUCTION

Modern information technology tends to increase the complexity of artifacts,
whether they are small, personal devices or huge systems like industrial plants
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EXTERNAL Complexity

(apparent & real)
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INTERACTION Complexity

L~ T

Steps: 9091
Distance: 4850m

e

Brushing and
linking as part of a
complex interactive
micro visualization
setup.

Simple view change Tap for
interaction details-on-demand
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MEDIATED Complexity




SITUATEDNESS
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EMBEDDED
VISUALIZATION
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Visualization about oneself or one’s
surrounding on wearable device



Slide by Alaul Islam

Mobile Visualization Design:
An ldeation Method to Try

AK Peters Visualization Series
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Tanja Blascheck, University of Stuttgart
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Research Methodology
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Slide adapted from Alaul Islam

Explored the city of Stuttgart, Germany in a
large team

Stopped at each sight after 30 minutes

Evaluated our information needs in the
current situation

Sketched a visualization on a prop

Pairs of team members discussed their
ideas and added comments, adjustments or
variations to their notes and sketches

43



A

3

. “"->""+""”\”
K-8 \

W
.\ T

Vi
VA
2
It
\\]@‘l‘
\.

£

\;

,,.M‘,;m@:I-J@m@ ZT\M_MW,M =y

Visualization designs
for smartwatches

Slide adapted from Alaul Islam



Data and Watch Functions
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Information Needs

Additional context-specific information

Tracking information from activities

Reminders, todos
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Data Representations

Many bespoke visualizations using known technigues

Map with icons
Bar chart

Stripe chart/1D matrix

| T
5 %
53
' g
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O
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0089
s €

Visualizations beyond the display
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What did we learn about
smartwatch visualizations?

[V
||
I
b ¢

 We can do better than transfer from large |
to small :

» \isualizations adapted to entire device
e Time is a critical feature
* Information needs based on context



Visualizing Information on Watch Faces: A Survey with Smartwatch Users

Alaul Islam® Anastasia Bezerianos' Bongshin Lee*
Université Paris-Saclay, CNRS, Inria, LRI Université Paris-Saclay, CNRS, Inria, LRI Microsoft Research
Tanja Blascheck?® Petra Isenberg’
University of Stuttgart Université Paris-Saclay, CNRS, Inria, LRI

.wfo
Temperature // \ Watch

@ battery
level

Ste
ptO

n @
o / \\ // Heart rate/ECG
@ Distance wavciom,

traveled @ Calories burned

Figure 1: Smartwatch face examples (from Facer [13]) with increasing amounts of data items and representation types. From left to
right: Material Volcano (Bluelceshard), Pie Charts Il (Sunny Liao), Minimal Colors H (AK Watch), and Earthshade (Brad C). The
graph on the right shows common pairs of data types displayed on the watch faces our 237 survey participants used. Circle colors
correspond to three data categories: Health & Fitness, Weather & Planetary, and Device & Location.

Islam et al, IEEE Visualization (VIS), 2020 Short Paper

Slide from Alaul Islam
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Methodology

Survey with smartwatch wearers

about their current watch face

Slide from Alaul Islam

Visualizing information on smartwatches

The purpose of this research study is to unde i the types of information people display on their watch faces and will take you approximately 5-8 minutes to

complete. Your participation in this study is entirely volunt: you can withdraw at any time.

You are being invited to participate in a research study titled "Visualization on Smartwatches". This study is conducted by Mohammad Alaul Islam and Petra Isenberg
from Inria (France), Tanja Blascheck from the University of Stuttgart (Germany), Anastasia Bezerianos from LRI (France) and Bongshin Lee from Microsoft Research
(USA).

Photo Seurce: intemet

Load unfinished survey
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General Findings

. 237 valid responses
. On average 5 different data

items displayed on watch face

Slide from Alaul Islam

Participants

012345678 9101112131415161718
Number of data items reported

o1



Which data types do people show on their
watch faces?

Device

Slide from Alaul Islam
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Data with different representation types

‘ very rare ®

Only Text Onlylcon Only Graph
bpm g o S -7

REPRESENTATIONS

Slide from Alaul Islam Pulsating heart icon: cliply.co 53



What did we learn about
smartwatch visualizations?

e Charts are rare
« why?

* |cons are very common
e Can we use them for visualization?

« Smartwatches show lots of data in small space
« Can we read multiple items?
« How quickly can we read them?
« How should they be arranged?

o4



QUICK GLANCES



Research Questions

How can visualizations be read?
How can small visualizations be read?

Slide from Anastasia Bezerianos

o6









Preparing for Perceptual Studies:

Position and Orientation of Wrist-
worn Smartwatches for Reading
S Tasks

Anastasia Bezerianos
Lonni Besangon
Bongshin Lee

Petra Isenberg

Workshop on Data Visualization on Mobile Devices held at ACM CHI, 2018

s Vi Z | m Mﬁ(é(géam &; ot ntanst




How to find the right setup?

Ran our own study

for seated participants
for standing participants

Slide from Anastasia Bezerianos
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Model

28cm + 5cm

[10°+8° |

floor

surface normal

01
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Glanceable Visualization: Studies of Data
Comparison Performance on Smartwatches

Tanja Blascheck, Lonni Besangon, Anastasia Bezerianos, Bongshin Lee, and
Petra Isenberg

InfoVis 2018 Mﬁ‘g’;earch &,'L'? P
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TASK

Data comparison
"Which bar is higher” ?

65
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Which target is larger?




68



Which target is larger?
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Which target is larger?
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Which target is larger?
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Which target is larger?
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Which target is larger?
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Which target is larger?
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Which target is larger?
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Which target is larger?




Results
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How quickly can we compare two data values on a smartwatch?

@ :

560-3900ms”™

180-440ms™ 180-270ms™

*depending on number of data items (we tested 7, 12, & 24)

85



What did we learn about smartwatch visualizations?

 People can perform comparison task VERY
quickly with bar and donut charts m M m
 What about other tasks?
 What about smaller visualizations? Py o
- ..even relatively “complex” visualizations ( } -f )
* Are there thresholds? Dt st

» What about more complex contexts?

any

®©|6]6




Studies of Part-to-Whole Glanceable Visualizations
on Smartwatch Faces

Tanja Blascheck, Lonni Besangon, Anastasia Bezerianos, Bongshin Lee, Alaul Islam, Tingying He, Petra Isenberg

PacificVis 2023
Microso ft-

université Research &z zia—

PARIS-SACLAY @ e s invenTeuRs ouMONDE NUMERIQUE



Reading Multiple Representations at Once

Can this be done at a glance?
HOW does the representation type matter?

How does the complexity of the watch face matter?
How does the viewing angle matter?




Task

1,092
I

calories

S

In how many fitness categories have you reached >66% of your goal?

89






Results

slower & more errors than




Results

Most visually pleasing




Exp 2: Does an analog watch face distract?

4572ms, 25% error

+55ms

N Ot rea | |y ‘1’ slower but fewer errors (but error difference is very small)

330ms, 2/7/% error

+12ms




Exp 3: Impact of viewing angle

94



Exp 3: Results

* No evidence of a difference for bar charts

« Radial charts slower & more error at 0°
but diffs are practically small

.5

Dﬂ
22°

.UQ
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What did we learn about smartwatch visualizations?

« Simple tasks can be quickly done (<500ms) even for many dimensions with
bars/donuts

» Analog watchface distracts only slightly

 The angle matters only slightly



Conclusion: That's good news!

Micro Visualizations* have a lot of potential for smartwatches

Use them!

**micro visualizations are small-scale visualizations that fit into
foveal vision”
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What do we know about how to
design visualizations under motion?



ALMOST NOTHING ®



ALMOST NOTHING ©



Visualization

©®Motion

Visualizations in motion are visual data representations used

in contexts that exhibit Felative motion between 2
VIEWET and an @NtIre visualization



Visualizations in Motion

§!><!>
Viewer

Stationary

Stationary

Visualization
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Visualizations in Motion

Visualization

S®
Viewer
Stationary Moving
AR/ VR
Stationary Wall Displays
Data Physicalization
AR/ VR AR/ VR
Moving Video Tracking Wearables
User Interaction Mobile DataVis
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Research Agenda

Building empirical foundations
regarding the impact of...

» Characteristics of Motion
e Situation, context, design
» Spatial relationships

* Technology

IEEE TVCG SUBMISSION 1

Visualization in Motion: A Research Agenda and
Two Evaluations

Lijie Yao, Anastasia Bezerianos, Romain Vuillemot, and Petra Isenberg

Moving visualization & stationary viewer. Stationary visualization & moving vicwer. Moving visualization & moving vicwer.

Fig. 1: Visualization scenarios that involve different types of relative movement between viewers and visualization: (a): 0 A.D. game
characters with attached health meters, (b): an augmented basketball match from the tool Clipper CourtVision. (c): a walkable visualization
of the general organization of scholars at ENAC in France [71], [72]. (d): an on-street bar chart that can be driven or walked by created
by the Respect New Haven activist group. (e): a runner looking at her fitness data. (f): a person checking financial charts on her phone
while walking to a meeting. Image permissions are listed in the acknowledgments.

Abstract—We contribute a research agenda for visualization in motion and two experiments to understand how well viewers can read
data from moving visualizations. We define visualizations in motion as visual data representations that are used in contexts that exhibit
relative motion between a viewer and an entire visualization. Sports analytics, video games, wearable devices, or data physicalizations
are example contexts that involve different types of relative motion between a viewer and a visualization. To analyze the opportunities and
challenges for designing visualization in motion, we show example scenarios and outline a first research agenda. Motivated primarily by
the prevalence of and opportunities for visualizations in sports and video games we investigate the impact of two important characteristics
of motion outlined in our research agenda—speed and trajectory on a stationary viewer's ability to read data from moving donut and bar
charts. We found that increasing speed and trajectory complexity did negatively affect accuracy of reading values from the charts and that
bar charts were more negatively impacted. In practice, however, this impact was small: both charts were still read fairly accurately.

Index Terms—Visualization, visualization in motion, perception, research agenda, movement, motion.

A

IEEE TVCG, 2022

ANR Grant Ember
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Specific Research Questions

How accurately can people read visualization under motion?

N
O

107



Experiment: Part 1

Tell us at what percentage (%) the red slice had:

Please enter your answer here

Please give an answer

s




Visualization 0D
. -
Ofotion =

= 3.  Mdtionfactors matter

o=

] D Both speed and trajectory have an impact on the
Iﬂ readability of moving simple charts



Visualization 0D
. -
Ofotion =

Speed and trajectory inpact

Higher speed and irregular trajectories generally
lead to more errors




Visualization 0D
. -
Ofotion =

Can get reliable information

People can read close to exact answers and got
reliable information from moving charts




Visualization Y speed
OMotion =e=»

Donut chart would be a better choice

Participants’ performance was slightly worse on bar chart

Visvalization

®Motion Creta— uvesE & @
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What did we learn about smartwatch visualizations?

* |deation:
 Context matters, time matters, bespoke visualizations

* Current practices:
 Health data of primary interest
 Generally “low” external complexity

* Perception:
 People can read vis quickly under motion and in small size

Many untapped opportunities for visualizations on wearables



Methodologies

General
audiences

Summary

- N e
i |
Visualization Mobile Data
in Motion Visualization
\_ AN

~>

In-situ and quick
information needs

Ubiquitous settings

Empower the general public to use / understand data

Advance scientific knowledge

Establish new research directions
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Ubiquitous Visualization

PERSONAL VISUALIZATION
IMMERSIVE ANALYTICS
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UNDERSTAND DATA
TO NAVIGATE THE(IR) WORLD
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Visualization for
8 Devices & Embedded Experiences

Petra Isenberg
7 @dr_pi [= petra.isenberg@inria.fr
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